Journal of Molecular Evolution

, Volume 41, Issue 3, pp 359–365 | Cite as

Molecular phylogeny of gibbons inferred from mitochondrial DNA sequences: Preliminary report

  • Seiji Hayashi
  • Kenji Hayasaka
  • Osamu Takenaka
  • Satoshi Horai
Articles

Abstract

We analyzed the 896 base-pair (bp) mitochondrial DNA (mtDNA) sequences for seven gibbons, representative of three out of four subgenera. The result from our molecular analysis is consistent with previous studies as to the monophyly of subgenusHylobates species, yet the relationship among subgenera remains slightly ambiguous. A striking result of the analysis is the phylogenetic location of Kloss's gibbon (H. klossii). Kloss's gibbon has been considered to be an initial off-shoot of the subgenusHylobates because of its morphological primitiveness. However, our molecular data strongly suggest that Kloss's gibbon speciated most recently within the subgenusHylobates.

Key words

Gibbons Mitochondrial DNA Phylogeny 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrel BG, de Brujin MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Standen R, Young IC (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465Google Scholar
  2. Brown WM, Prager EM, Wang A, Wilson AC (1982) Mitochondrial DNA sequences of primates: tempo and mode of evolution. J Mol Evol 18:225–239Google Scholar
  3. Creel N, Preushoft H (1984) Systematics of the lesser apes: a quantitative taxonomic analysis of craniometric and other variables. In: Preushoht H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes—evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 562–613Google Scholar
  4. Cronin JE, Sarich VM, Ryder O (1984) Molecular evolution and speciation. In: Preushoht H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes-evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 467–485Google Scholar
  5. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376Google Scholar
  6. Felsenstein J (1993) PHYLIP (phylogeny inference package), version 3.5c. University of Washington, SeattleGoogle Scholar
  7. Fitch WM (1971) Toward defining the course of evolution: minimal change for a specific tree topology. Syst Zool 20:406–416Google Scholar
  8. Fleagle JG (1984) Are there any fossil gibbons? In: Preushoht H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apesevolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 431–447Google Scholar
  9. Garza JC, Woodruff DS (1992) A phylogenetic study of the gibbons (Hylobates) using DNA obtained noninvasively from hair. Mol Phylogenet Evol 1:202–210Google Scholar
  10. Groves CP (1984) A new look at the taxonomy and phylogeny of the gibbons. In: Preushoht H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes-evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 542–561Google Scholar
  11. Groves CP (1989) A theory of human and primate evolution. Clarendon Press, OxfordGoogle Scholar
  12. Gyllensten UB, Erlich HA (1988) Generation of single-stranded DNA by the polymerise chain reaction and its application to direct sequencing of the HLA-DQA locus. Proc Natl Acad Sci USA 85:7652–7656Google Scholar
  13. Haimoff EH, Gittins SP, Whitten AJ, Chivers DJ (1984) A phylogeny and classification of gibbons based on morphology and ethology. In: Preushoht H, Chivers DJ, Brockelman WY, Creel N (eds) The lesser apes-evolutionary and behavioral biology. Edinburgh University Press, Edinburgh, pp 614–632Google Scholar
  14. Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5:626–644Google Scholar
  15. Horai S, Satta Y, Hayasaka K, Kondo R, Inoue T, Ishida T, Hayashi S, Takahata N (1992) Man's place in Hominoidea revealed by mitochondrial DNA genealogy. J Mol Evol 34:32–43Google Scholar
  16. Horai S, Hayasaka K, Kondo R, Tsugane K, Takahata N (1995) Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci USA 92:532–536Google Scholar
  17. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120Google Scholar
  18. Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179Google Scholar
  19. Koop BF, Goodman M, Xu P, Chan K, Slightom JL (1986) Primate η-globin DNA sequences and man's place among the great apes. Nature 319:234–238Google Scholar
  20. Lucotte G, Gautreau C, Smith DG (1982) Distance electrophoretiques entre trois sous-genres de gibbons. Ann Genet 25:11–13Google Scholar
  21. Marshall J, Sugardjito J (1986) Gibbon systematics. In: Swindler D (ed) Comparative primate biology: systematics, evolution and anatomy. AR Liss, New York, pp 137–185Google Scholar
  22. Miyamoto MM, Slightom JL, Goodman M (1987) Phylogenetic relations of humans and African apes from DNA sequences in the ϕη-globin region. Science 238:369–373Google Scholar
  23. Prouty LA, Buchanan PD, Pollitzer WS, Moomick AR (1983) Bunopithecus: a genus-level taxon for the Hoolock gibbon (Hylobates hoolock). Am J Primatol 5:83–87Google Scholar
  24. Saiki RK, Gelfand DH, Stoffel S, Schurf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer-detected enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491Google Scholar
  25. Saitou N, Nei M (1987) The neighbor-joining method: a new method of reconstructing phylogenetic trees. Mol Biol Evol 4:406–425Google Scholar
  26. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  27. Sibley CG, Ahlquist JE (1987) DNA hybridization evidence of hominoid phylogeny: results from expanded data set. J Mol Evol 26:99–121Google Scholar
  28. Swofford DL (1991) PAUP: phylogenetic analysis using parsimony, version 3.0s. Illinois Natural History Survey, Champaign, ILGoogle Scholar
  29. Tamura K (1992) NJBOOT2, version 1.06. Pennsylvania State University, PAGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Seiji Hayashi
    • 1
  • Kenji Hayasaka
    • 2
  • Osamu Takenaka
    • 3
  • Satoshi Horai
    • 2
  1. 1.Department of Planetary and Earth SciencesSchool of Science, Nagoya UniversityChikusa-ku, NagoyaJapan
  2. 2.Department of Human GeneticsNational Institute of GeneticsMishima, ShizuokaJapan
  3. 3.Primate Research InstituteKyoto University, KanrinInuyama, AichiJapan

Personalised recommendations