Journal of Molecular Evolution

, Volume 41, Issue 3, pp 353–358 | Cite as

Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes

  • Nicole T. Perna
  • Thomas D. Kocher
Articles

Abstract

Three statistics (%GC, GC-skew, and AT-skew) can be used to describe the overall patterns of nucleotide composition in DNA sequences. Fourfold degenerate third codon positions from 16 animal mitochondrial genomes were analyzed. The overall composition, as measured by %GC, varies from 3.6 %GC in the honeybee to 47.2 %GC in human mtDNA. Compositional differences between strands of the mitochondrial genome were quantified using the two skew statistics presented in this paper. Strand-specific distribution of bases varies among animal taxa independently of overall %GC. Compositional patterns reflect the substitution process. Description of these patterns may aid in the formation of hypotheses about substitutional mechanisms.

Key words

mtDNA Composition Skew %GC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465Google Scholar
  2. Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717Google Scholar
  3. Asakawa S, Kumazawa Y, Araki T, Himeno H, Miura K, Watanabe K (1991) Strand-specific nucleotide composition bias in echinoderm and vertebrate mitochondrial genomes. J Mol Evol 32:511–520Google Scholar
  4. Attardi G, Cantatore P, Chomyn A, Crews S, Gelfand R, Merkel C, Montoya J, Ojala D (1982) A comprehensive view of mitochondrial gene expression in human cells. In: Slonimski P, Borst P, Attardi G (eds) Mitochondrial genes. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 51–71Google Scholar
  5. Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180Google Scholar
  6. Brown WM (1981) Mechanisms of evolution in animal mitochondrial DNA. Ann NY Acad Sci 361:119–134Google Scholar
  7. Brown GG, Simpson MV (1982) Novel features of animal mtDNA evolution as shown by sequences of two rat cytochrome oxidase subunit II genes. Proc Natl Acad Sci USA 79:3246–3250Google Scholar
  8. Bulmer M (1985) Neighboring base effects on substitution rates in pseudogenes. Mol Biol Evol 3:322–329Google Scholar
  9. Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907Google Scholar
  10. Cantatore P, Roberti M, Rainaldi G, Gadaleta MN, Saccone C (1989) The complete nucleotide sequence, gene organization, and genetic code of the mitochondrial genome ofParacentrotus lividus. J Biol Chem 264(19):10965–10975Google Scholar
  11. Chang YS, Huang FL, Lo T (1994) The complete nucleotide sequence and gene organization of carp (Cyprinus carpio) mitochondrial genome. J Mol Evol 38:138–155Google Scholar
  12. Clary DO, Wolstenholme D (1985) The mitochondrial molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol 22:252–271Google Scholar
  13. Clayton DA (1992) Transcription and replication of animal mitochondrial DNAs. Int Rev Cytol 141:217–232Google Scholar
  14. Crozier RH, Crozier YC (1993) The mitochondrial genome of the honeybeeApis mellifera: complete sequence and genome organization. Genetics 133:97–117Google Scholar
  15. De Giorgi C, De Luca F, Saccone C (1991a) Mitochondrial DNA in the sea urchin Arbacia lixula: nucleotide sequence differences between two polymorphic molecules indicate asymmetry of mutations. Gene 103:249–252Google Scholar
  16. De Giorgi C, Lanave C, Musci M, Saccone C (1991b) Mitochondrial DNA in the sea urchinArbacia lixula: evolutionary inferences from nucleotide sequence analysis. Mol Biol Evol 8:515–529Google Scholar
  17. Desjardins P, Morais R (1990) Sequence and gene organization of the chicken mitochondrial genome: a novel gene order in higher vertebrates. J Mol Biol 212:599–634Google Scholar
  18. Devereux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395Google Scholar
  19. Himeno H, Masaki H, Kawai T, Ohta T, Kumagai I, Miura K, Watanabe K (1987) Unusual genetic codes and a novel gene structure for Ser-tRNA-AGY in starfish mitochondrial DNA. Gene 56:219–230Google Scholar
  20. Hoffmann RH, Boore JL, Brown WM (1992) A novel mitochondrial genome organization for the blue mussel,Mytilus edulis. Genetics 131:397–412Google Scholar
  21. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144Google Scholar
  22. Jacobs HT, Elliott DJ, Math VB, Farquharson A (1988) Nucleotide sequence and gene organization of sea urchin mitochondrial DNA. J Mol Biol 202:185–217Google Scholar
  23. Kocher TD, Wilson AC (1991) Sequence evolution of mitochondrial DNA in humans and chimpanzees: control region and a proteincoding region. In: Osawa S, Honjo T (eds) Evolution of life: fossils, molecules and culture. Springer-Verlag, Tokyo, pp 391–413Google Scholar
  24. Kunkel TA (1985) The mutational specificity of DNA polymerasesalpha and -gamma duringin vitro DNA synthesis. J Biol Chem 260:12866–12874Google Scholar
  25. Lee W-J, Kocher TD (1995) Complete sequence of a sea lamprey (Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome structure. Genetics 139:873–887Google Scholar
  26. Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715Google Scholar
  27. Okimoto R, Macfarlane JL, Clary DO, Wolstenholme DR (1992) The mitochondrial genomes of two nematodes,Caenorhabditis elegans andAscaris suum. Genetics 130:471–498Google Scholar
  28. Saccone C, Lanave C, Pesole G, Sbisa E (1993) Peculiar features and evolution of mitochondrial genome in mammals. In: Di Mauro and Wallace (eds) Mitochondrial DNA in human pathology. Raven Press, New York, pp 27–39Google Scholar
  29. Shields DC, Sharp PM (1987) Synonymous codon usage inBacillus subtilis reflects both translational selection and mutational biases. Nucleic Acids Res 15:8023–8041Google Scholar
  30. Sidow A, Thomas WK (1994) A molecular evolutionary framework for eukaryotic model organisms. Curr Biol 4(7):596–603Google Scholar
  31. Sueoka N (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85:2653–2657Google Scholar
  32. Tzeng C-S, Hui C-F, Shen S-C, Huang PC (1992) The complete nucleotide sequence of theCrossostoma lacustre mitochondrial genome: conservation and variation among vertebrates. Nucleic Acids Res 20:4853–4858Google Scholar
  33. Xiong B, Kocher TD (1993) Phylogeny of sibling species of Simulium venustum and S. verecundum (Diptera:Simuliidae) based on sequences of the mitochondrial 16S rRNA gene. Mol Phyl Evol 2:293–303Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Nicole T. Perna
    • 1
  • Thomas D. Kocher
    • 1
  1. 1.Program in Genetics and Department of ZoologyUniversity of New HampshireDurhamUSA

Personalised recommendations