Mathematische Zeitschrift

, Volume 157, Issue 2, pp 101–119 | Cite as

Cohomological aspects of two-graphs

  • Peter J. Cameron


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bannai, E.: Normal subgroups of 6-transitive permutation groups. J. Algebra42, 46–59 (1976)Google Scholar
  2. 2.
    Bender, H.: Endlich zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben. Math. Z.104, 175–204 (1968)Google Scholar
  3. 3.
    Burnside, W.: Theory of Groups of Finite Order. New York: Dover (reprint) 1955Google Scholar
  4. 4.
    Cameron, P.J.: On basis-transitive Steiner systems. J. London math. Soc. II. Ser.13, 393–399 (1976)Google Scholar
  5. 5.
    Cameron, P.J.: Automorphism and cohomology of switching classes. J. combinat. Theory, Ser. B,22, 297–298 (1977)Google Scholar
  6. 6.
    Erdös, P., Rényi, A.: Asymmetric graphs. Acta math. Acad Sci. Hungar.14, 295–315 (1963)Google Scholar
  7. 7.
    Frucht, R.: Graphs of degree 3 with given abstract group. Canadian J. Math.1, 365–378 (1949)Google Scholar
  8. 8.
    Hale, M.P., Jr., Shult, E.E.: Equiangular lines, the graph extension theorem, and transfer in triply transitive groups. Math. Z.135, 111–123 (1974)Google Scholar
  9. 9.
    Higman, D.G.: Remark on Shult's graph extension theorem. In: Finite Groups '72 (Gainesville 1972) (ed. T.M. Gagen, M.P. Hale Jr., E.E. Shult), pp. 80–83. Amsterdam: North Holland 1973Google Scholar
  10. 10.
    Liskovec, V.A.: Enumeration of Euler graphs. Vescī. Akad. Navuk BSSR Ser. Fīz-Mat. Navuk, 1970, no. 6, 38–46 (1970)Google Scholar
  11. 11.
    MacLane, S.: Homology. Berlin-Göttingen-Heidelberg: Springer 1963Google Scholar
  12. 12.
    MacWilliams, F.J.: A theorem on the distribution of weights in a systematic code. Bell System Techn. J.42, 79–84 (1963)Google Scholar
  13. 13.
    Mallows, C.L., Sloane, N.J.A.: Two-graphs, switching classes, and Euler graphs are equal in number. SIAM J. appl. Math.28, 876–880 (1975)Google Scholar
  14. 14.
    Mielants, W.: A regular 5-graph. Rend. Acc. Naz. Lincei60, 573–578 (1976)Google Scholar
  15. 15.
    Robinson, A.W.: Enumeration of Euler graphs. In: Proof Techniques in graph Theory (Ann Arbor 1968) (ed. F. Harary), pp. 47–53. New York: Academic Press 1969Google Scholar
  16. 16.
    Seidel, J.J.: A survey of two-graphs. In: Colloquio internazionale sulle teorie combinatorie (Roma 1973). Roma: Accademia Nazionale dei Lincei 1976Google Scholar
  17. 17.
    Seidel, J.J.: Graphs and two-graphs. In: Proceedings of the 5th Southeastern Conference on Combinatorics, Graph Theory, and Computing (Boca Raton 1974) (ed. F. Hoffman et al.) pp. 125–143. Winnipeg: Utilitas Mathematica 1974Google Scholar
  18. 18.
    Taylor, D.E.: Some topics in the theory of finite groups. D.Phil. Thesis, Oxford 1971Google Scholar
  19. 19.
    Wielandt, H.: Über die Existenz von Normalteilern in endlichen Gruppen. Math. Nachr.18, 274–280 (1958)Google Scholar
  20. 20.
    Wielandt, H.: Normalteiler in 3-transitiven Gruppen. Math. Z.136, 243–244 (1974)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Peter J. Cameron
    • 1
  1. 1.Merton CollegeOxfordEngland

Personalised recommendations