Advertisement

Mathematische Zeitschrift

, Volume 190, Issue 3, pp 401–410 | Cite as

Embeddings and proper holomorphic maps of strictly pseudoconvex domains into polydiscs and balls

  • Erik Løw
Article

Keywords

Pseudoconvex Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cima, J.A., Suffridge, T.J.: A reflection principle with applications to proper holomorphic mappings. Math. Ann. 265, 489–500 (1983)Google Scholar
  2. 2.
    Cole, B., Range, R.M.: A-measures on complex manifolds and some applications. J. Funct. Anal.11, 393–400 (1972)Google Scholar
  3. 3.
    Diederich, K., Fornaess, J.E.: Proper holomorphic images of strictly pseudoconvex domains. Math. Ann.259, 279–286 (1982)Google Scholar
  4. 4.
    Faran, J.J.: Maps from the two-ball to the three-ball and maps taking lines to plane curves. PreprintGoogle Scholar
  5. 5.
    Fornaess, J.E.: Embedding strictly pseudoconvex domains in convex domains. Am. J. Math.98, 529–569 (1976)Google Scholar
  6. 6.
    Hakim, M., Sibony, N.: Fonctions holomorphes bornees sur la boule unite deC n. Invent. Math.67, 213–222 (1982)Google Scholar
  7. 7.
    Lempert, L.: Imbedding strictly pseudoconvex domains into a ball. Am. J. Math.104, 901–904 (1982)Google Scholar
  8. 8.
    Løw, E.: A construction of inner functions on the unit ball inC p. Invent. Math.67, 223–229 (1982)Google Scholar
  9. 9.
    Løw, E.: Inner functions and boundary values inH (Ω) andA (Ω) in smoothly bounded pseudoconvex domains. Math. Zeitschr.185, 191–210 (1984)Google Scholar
  10. 10.
    Løw, E.: The ball inC n is a closed complex submanifold of a polydisc. PreprintGoogle Scholar
  11. 11.
    Rudin, W.: Function theory in the unit ball ofC n. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  12. 12.
    Webster, S.M.: On mapping ann-ball into an (n+1)-ball in complex space. Pac. J. Math.81, 267–272 (1979)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Erik Løw
    • 1
  1. 1.Matematisk InstituttUniversitetet i OsloOslo 3Norway

Personalised recommendations