Mathematische Zeitschrift

, Volume 154, Issue 1, pp 19–29 | Cite as

Quasi-invariance of measures under translation

  • Srishti D. Chatterji
  • Vidyadhar Mandrekar


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chatterji, S. D.: Les martingales et leurs applications analytiques. In: Ecole d'été de probabilités: Processus Stochastiques. pp. 27–164. Lecture Notes in Mathematics307. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  2. 2.
    Chatterji, S. D., Mandrekar, V.: Sur la quasi-invariance des mesures sous les translations. C.r. Acad. Sci., Paris Sér. A281, 581–583 (1975)Google Scholar
  3. 3.
    Doob, J. L.: Stochastic Processes. New York: John Wiley 1953Google Scholar
  4. 4.
    Dudley, R. M.: Singularity of measures on linear spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete6, 129–132 (1966)Google Scholar
  5. 5.
    Feldman, J.: Examples of non-Gaussian quasi-invariant distributions in Hilbert space. Trans. Amer. math. Soc.99, 342–349 (1961)Google Scholar
  6. 6.
    Feller, W.: An introduction to probability theory and its applications, Vol. II. New York: John Wiley 1966Google Scholar
  7. 7.
    Mandrekar, V., Nadkarni, M.: On ergodic quasi-invariant measures on the circle group. J. functional Analysis3, 157–163 (1968)Google Scholar
  8. 8.
    Mazur, S., Orliez, W.: On some classes of linear spaces. Studia math.17, 97–119 (1958)Google Scholar
  9. 9.
    Shepp, L. A.: Distinguishing a sequence of random variables from a translate of itself. Ann. math. Statistics36, 1107–1112 (1965)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Srishti D. Chatterji
    • 1
  • Vidyadhar Mandrekar
    • 2
  1. 1.Département de mathématiquesÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  2. 2.Department of StatisticsMichigan State UniversityEast LansingUSA

Personalised recommendations