Mathematische Zeitschrift

, Volume 180, Issue 1, pp 119–140 | Cite as

Ergodic properties of invariant measures for piecewise monotonic transformations

  • Franz Hofbauer
  • Gerhard Keller
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Babbel, B.: Diplomarbeit, Institut für Mathematische Statistik und Wirtschaftsmathematik der Universität Göttingen 1980Google Scholar
  2. 2.
    Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics470. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  3. 3.
    Bowen, R.: Bernoulli maps of an interval. Israel J. Math.28, 298–314 (1978)Google Scholar
  4. 4.
    Dunford, N., Schwartz, J.T.: Linear Operators, Part I. New York: Interscience 1957Google Scholar
  5. 5.
    Gordin, M.I.: The central limit theorem for stationary processes. Soviet Math. Dokl.10, 1174–1176 (1969)Google Scholar
  6. 6.
    Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. Israel J. Math.34, 213–237 (1979)Google Scholar
  7. 7.
    Hofbauer, F.: On intrinsic ergodicity of piecewise monotonic transformations with positive entropy II. Israel J. Math. (To appear)Google Scholar
  8. 8.
    Ibragimov, I.A., Linnik, Y.V.: Independent and stationary sequences of random variables. Groningen: Wolters-Noordhoff 1971Google Scholar
  9. 9.
    Ionescu-Tulcea, C., Marinescu, G.: Théorie ergodique pour des classes d'opérations non complètement continues. Ann. of Math. (2)52, 140–147 (1950)Google Scholar
  10. 10.
    Keller, G.: Un théorème de la limite centrale pour une classe de transformations monotones per morceaux. C.R. Acad. Sci. Paris Sér. A291, 155–158 (1980)Google Scholar
  11. 11.
    Lasota, A., Yorke, J.: On the existence of invariant measures for piecewise monotonic transformations. Trans. Amer. Math. Soc.186, 481–488 (1973)Google Scholar
  12. 12.
    Ledrappier, F.: Principe variationnel et systemes dynamiques symboliques. Z. Wahrscheinlich-keitstheorie verw. Gebiete30, 185–202 (1974)Google Scholar
  13. 13.
    Li, T., Yorke, J.: Ergodic transformations from an interval into itself. Trans. Amer. Math. Soc.235, 183–192 (1978)Google Scholar
  14. 14.
    Li, T., Yorke, J.: Iterating piecewise expanding maps: Asymptotic dynamics of probability densities. PreprintGoogle Scholar
  15. 15.
    Philipp, W., Stout, W.: Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc.161 (1975)Google Scholar
  16. 16.
    Ratner, M.: Bernoulli flows over maps of the interval. Israel J. Math.31, 298–314 (1978)Google Scholar
  17. 17.
    Rohlin, V. A.: Exact endomorphisms of Lebesgue spaces. Amer. Math. Soc. Transl. (2)39, 1–36 (1964)Google Scholar
  18. 18.
    Schäfer, H.H.: Topological Vector Spaces. New York: MacMillan 1966Google Scholar
  19. 19.
    Volkonski, V.A., Rozanov, Y.A.: Some limit theorems for random functions II. Theor. Probability Appl.6, 186–198 (1961)Google Scholar
  20. 20.
    Wagner, G.: The ergodic behavior of piecewise monotonic transformations. Z. Wahrscheinlich-keitstheorie und verw. Gebiete46, 317–324 (1979)Google Scholar
  21. 21.
    Walters, P.: Ergodic theory. Lecture Notes in Mathematics458, Berlin-Heidelberg-New York: Springer 1975Google Scholar
  22. 22.
    Walters, P.: Equilibrium states for β-transformations and related transformations. Math. Z.159, 65–88 (1978)Google Scholar
  23. 23.
    Wong, S.: Some metric properties of piecewise monotonic mappings of the unit interval. Trans. Amer. Math. Soc.246, 493–500 (1978)Google Scholar
  24. 24.
    Wong, S.: A central limit theorem for piecewise monotonic mappings of the unit interval. Ann. Probability7, 500–514 (1979)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Franz Hofbauer
    • 1
  • Gerhard Keller
    • 2
  1. 1.Institut für MathematikUniversität WienWienAustria
  2. 2.Institut für Mathematische Statistik der UniversitätGöttingenFederal Republic of Germany

Personalised recommendations