Mathematische Zeitschrift

, Volume 171, Issue 3, pp 247–268 | Cite as

Mod 2 semi-characteristics and the converse to a theorem of Milnor

  • William Pardon


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, G.: Surgery with Coefficients. Lecture Notes in Mathematics bd591. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  2. 2.
    Bak, A.:K-theory of Forms. Annals of Mathematics Studies. Princeton, New Jersey: Princeton University Press (to appear)Google Scholar
  3. 3.
    Bass, H.: AlgebraicK-theory. New York-Amsterdam: Benjamin 1968Google Scholar
  4. 4.
    Bass, H.: Unitary AlgebraicK-theory. In: AlgebraicK-Theory. HermitianK-Theory and Geometry Applications. Proceedings of a Conference (Seattle 1972), pp. 57–265. Lecture Notes in Mathematics343. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  5. 5.
    Bass, H.: Projective modules over algebras. Ann. of Math. (2)73, 532–542 (1961)Google Scholar
  6. 6.
    Browder, W.: Surgery on Simply-Connected Manifolds. Ergebnisse der Mathematik bd65. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  7. 7.
    Cartan, H., Eilenberg, S.: Homological Algebra. Princeton, New Jersey: Princeton University Press 1956Google Scholar
  8. 8.
    Carlsson, G., Milgram, R.J.: OddL-groups of finite 2-groups. preprint.Google Scholar
  9. 9.
    Carlsson, G., Milgram, R.J.: Torsion Witt groups for order and finite groups. In: Geometric Applications of Homology Theory I. Proceedings of a Conference (Evanston 1977), pp. 85–105. Lecture Notes in Mathematics657. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  10. 10.
    Dress, A.: Induction and structure theorems for orthogonal representations of finite groups. Ann. of Math. (2)102, 291–326 (1975)Google Scholar
  11. 11.
    Hambleton, I.: Existence of free involutions on 5-manifolds. Indiana Univ. Math. J.26, 777–787 (1977)Google Scholar
  12. 12.
    Kahn, P.: Mixing homotopy types of manifolds. Topology14, 203–216 (1975)Google Scholar
  13. 13.
    Kahn, D., Priddy, S.: Applications of the transfer to stable homotopy theory. Bull. Amer. Math. Soc.76, 981–987 (1972)Google Scholar
  14. 14.
    Barge, J., Lannes, J., Latour, F., Vogel, P.:A-Sphères. Ann. Sci. Ecole Nom. Sup. Ser. 4,7, 461–505 (1974)Google Scholar
  15. 15.
    Lee, R.: Semicharacteristic classes. Topology12, 183–200 (1973)Google Scholar
  16. 16.
    Madsen, I., Thomas, C.B., Wall, C.T.C.: “The topological spherical space form problem II: existence of free actions. Topology15, 375–382 (1976)Google Scholar
  17. 17.
    Milnor, J.: Groups which operate onS n without fixed points. Amer. J. Math.79, 612–623 (1957)Google Scholar
  18. 18.
    Pardon, W.: The exact sequence of a localization for Witt groups. In: AlgebraicK-Theory. Proceedings of a Conference (Evanston 1976), pp. 336–379. Lecture Notes in Mathematics551. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  19. 19.
    Pardon, W.: The exact sequence of a localization for Witt groups II: numerical invariants of odd-dimensional surgery obstructions. preprint.Google Scholar
  20. 20.
    Pardon, W.: An invariant determining the Witt class of a unitary transformation over a semisimple ring. J. Algebra44, 396–410 (1977)Google Scholar
  21. 21.
    Petrie, T.: Free metacyclic group actions on homotopy spheres. Ann. of Math. (2)94, 108–124 (1971)Google Scholar
  22. 22.
    Reiner, I.: Maximal Orders. London-New York: Academic Press 1975Google Scholar
  23. 23.
    Scharlau, W.: Involutions on orders I. Reine Angew. Math.268/269, 190–202 (1975)Google Scholar
  24. 24.
    Stong, R.: Semi-characteristics and group actions. Compositio Math.29, 223–248 (1974)Google Scholar
  25. 25.
    Sullivan, D.: Geometric topology, part I: localization, periodicity, and Galois symmetry. Cambridge, Mass.: Massachusetts Institute of Technology 1970Google Scholar
  26. 26.
    Swan, R.: Periodic resolutions for finite groups. Ann. of Math. (2)72, 267–291 (1960)Google Scholar
  27. 27.
    Swan, R.: Thep-period of a finite group. Illinois J. Math.4, 341–346 (1960)Google Scholar
  28. 28.
    Swan, R., Evans, G.:K-theory of finite groups and orders. Lecture Notes in Mathematics149. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  29. 29.
    Wall, C.T.C.: Classification of Hermitian forms II: semi-simple rings. Invent. Math.18, 119–141 (1972)Google Scholar
  30. 30.
    Wall, C.T.C.: Classification of Hermitian forms III: Complete semilocal rings. Unvent. Math.23, 59–71 (1973)Google Scholar
  31. 31.
    Wall, C.T.C.: Classification of Hermitian forms VI: Group rings. Ann. of Math. (2)103, 1–80 (1976)Google Scholar
  32. 32.
    Wall, C.T.C.: Free actions of finite groups on spheres. In: Algebraic and Geometric Topology. Proceedings of a Symposium (Stanford 1976), pp. 115–124. Proceedings of Symposia in Pure Mathematics 32. Providence, Rhode Island: American Mathematical Society 1978Google Scholar
  33. 33.
    Wolf, J.: Spaces of Constand Curvature. New York-San Francisco: McGraw-Hill 1967Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • William Pardon
    • 1
  1. 1.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations