Communications in Mathematical Physics

, Volume 86, Issue 4, pp 529–538 | Cite as

Measures on projections and physical states

  • Erik Christensen


It is shown that a finitely additive measure on the projections of a von Neumann algebra withoutI2 andII1 summands is the restriction of a state. A definition of a physical state is proposed, and it is shown that such a physical state on a simpleC*-algebra with unit is a state.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aarnes, J.F.: Quasi-states onC*-algebras. Trans. Am. Math. Soc.149, 601–625 (1970)Google Scholar
  2. 2.
    Dixmier, J.: LesC*-algebres et leurs representations. Paris: Gauthier-Villars 1969Google Scholar
  3. 3.
    Gleason, A.M.: Measures on closed subspaces of a Hilbert space. J. Math. Mech.6, 885–893 (1957)Google Scholar
  4. 4.
    Gunson, J.: Physical states on quantum logics. I. Ann. Inst. Henri Poincaré A17, 295–311 (1972)Google Scholar
  5. 5.
    Jauch, J.M.: Foundations of quantum mechanics. Reading. Mass.: Addison-Wesley 1968Google Scholar
  6. 6.
    Mackey, G.W.: Quantum mechanics and Hilbert space. Am. Math. Month.64, 45–57 (1957)Google Scholar
  7. 7.
    Pedersen, G.K.:C*-algebras and their automorphism groups. New York: Academic Press 1979Google Scholar
  8. 8.
    Takesaki, M.: Theory of operator algebras. I. Berlin, Heidelberg, New York: Springer 1979Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • Erik Christensen
    • 1
  1. 1.Matematisk InstitutKøbenhavns UniversitetKøbenhavnDanmark

Personalised recommendations