Advertisement

Mathematische Zeitschrift

, Volume 169, Issue 3, pp 223–236 | Cite as

Multiple points of immersions, and the Kahn-Priddy theorem

  • Ulrich Koschorke
Article

Keywords

Multiple Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, F.: On the non-existence of elements of Hopf invariant one. Ann. of Math.72, 20–104 (1960)Google Scholar
  2. 2.
    Banchoff, T.: Triple points and surgery of immersed surfaces. Proc. Amer. Math. Soc.46, 407–413 (1974)Google Scholar
  3. 3.
    Brown, E.: Framed manifolds with a fixed point free involution. Michigan Math. J.23, 257–260 (1976)Google Scholar
  4. 4.
    Cohen, J.: The decomposition of stable homotopy. Ann. of Math.87, 305–320 (1968)Google Scholar
  5. 5.
    Freedman, M.: Quadruple points of 3-manifolds inS 4. Comment. Math. Helv.53, 385–394 (1978)Google Scholar
  6. 6.
    Hilbert, D., Cohn-Vossen, S.: Geometry and the imagination. New York: Chelsea 1952Google Scholar
  7. 7.
    Hirsch, M.: Immersions of manifolds. Trans Amer. Math. Soc.93, 242–276 (1959)Google Scholar
  8. 8.
    Kahn, D., Priddy, S.: Applications of the transfer to stable homotopy theory. Bull. Amer. Math. Soc.78, 981–987 (1972)Google Scholar
  9. 9.
    Koschorke, U.: A singularity approach to framefields and other vector bundle morphisms. Lecture Notes in Mathematics. Berlin-Heidelberg-New York: Springer (to appear)Google Scholar
  10. 10.
    Koschorke, U., Sanderson, B.: Geometric interpretations of the generalized Hopf invariant. Math. Scand.41, 199–217 (1977)Google Scholar
  11. 11.
    Koschorke, U., Sanderson, B.: Selfintersections and higher Hopf invariants. Topology17, 283–290 (1978)Google Scholar
  12. 12.
    Mac Lane, S.: Homology. Grundlehren der Mathematischen Wissenschaften 114. Berlin-Heidelberg-New York: Springer 1975Google Scholar
  13. 13.
    Milnor, J., Kervaire, M.: Bernoulli numbers, homotopy groups, and a theorem of Rohlin. In: Proceedings of the International Congress of Mathematicians (Edinburgh 1958), pp. 454–458. Cambridge: Cambridge University Press 1960Google Scholar
  14. 14.
    Ray, N.: A geometrical observation on the Arf invariant of a framed manifold. Bull. London Math. Soc.4, 163–164 (1972)Google Scholar
  15. 15.
    Salomonsen, M. A.: Bordism and geometric dimension. Math. Scand.32, 87–111 (1973)Google Scholar
  16. 16.
    Segal, G.: Operations in stable homotopy theory. London Mathematical Society Lecture Note Series11, 105–110. Cambridge: Cambridge University Press 1974Google Scholar
  17. 17.
    Thom, R.: Quelques propriétés globales des variétés différentiables. Comment. Math. Helv.28, 17–86 (1954)Google Scholar
  18. 18.
    Toda, H.: Composition methods in homotopy groups of spheres. Princeton, New York: Princeton University Press 1962Google Scholar
  19. 19.
    Toda, H., Saito, Y., Yokota, I.: Note on the generator of π7(S0(n)). Mem. Coll. Sci. Univ. Kyoto Ser. A30, 227–230 (1957)Google Scholar
  20. 20.
    Whitehead, G.: Recent advances in homotopy theory. Regional Conference Series in Mathematics5. Providence, Rhode Island: American Mathematical Society 1970Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Ulrich Koschorke
    • 1
  1. 1.Fachbereich Mathematik der Gesamthochschule SiegenSiegen 21Germany

Personalised recommendations