Advertisement

Mathematische Zeitschrift

, Volume 145, Issue 2, pp 145–155 | Cite as

Riesz theory in Banach algebras

  • M. R. F. Smyth
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alexander, J. C.: Compact Banach algebras. Proc. London math. Soc., III. Ser.18, 1–18 (1968)Google Scholar
  2. 2.
    Barnes, B.A.: A generalised Fredholm theory for certain maps in the regular representations of an algebra. Canadian J. Math.20, 495–504 (1968)Google Scholar
  3. 3.
    Bonsall, F.F., Duncan, J.: Complete normed algebras. New York 1973Google Scholar
  4. 4.
    Dunford, N., Schwartz, J. T.: Linear operators. Part I. New York: Interscience 1958Google Scholar
  5. 5.
    Kleinecke, D.C.: Almost finite, compact and inessential operators. Proc. Amer. math. Soc.14, 863–868 (1963)Google Scholar
  6. 6.
    Pearlman, L. D.: Riesz points of the spectrum of an element in a semisimple Banach algebra. Trans. Amer. math. Soc.193, 303–328 (1974)Google Scholar
  7. 7.
    Rickart, C. E.: General theory of Banach algebras. Princeton: Van Nostrand 1960Google Scholar
  8. 8.
    Ruston, A. F.: Operators with a Fredholm theory. J. London math. Soc.29, 318–326 (1954)Google Scholar
  9. 9.
    West, T. T.: Riesz operators in Banach spaces. Proc. London math. Soc., III. Ser.16, 131–140 (1966)Google Scholar
  10. 10.
    West, T. T.: The decomposition of Riesz operators. Proc. London math. Soc., III. Ser.16, 737–752 (1966)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • M. R. F. Smyth
    • 1
  1. 1.Department of Computer ScienceThe Queen's University of BelfastBelfastNorthern Ireland

Personalised recommendations