Mathematische Zeitschrift

, Volume 176, Issue 4, pp 551–563

Blanchfield pairings with squarefree Alexander polynomial

  • Jonathan A. Hillman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M., MacDonald, I.G.: Introduction to Commutative Algebra. Reading-Menlo Park-London-Don Mills: Addision-Wesley, 1969Google Scholar
  2. 2.
    Bayer, E.: Factorization is not unique for higher dimensional knots. Comment. Math. Helv. (to appear)Google Scholar
  3. 3.
    Bayer, E., Michel, F.: Finitude du nombre des classes d'isomorphisme des structures isometriques entières. Comm. Math. Helv.54, 378–396 (1979)Google Scholar
  4. 4.
    Blanchfield, R.C.: Intersection theory on manifolds with operators with applications to knot theory. Ann. Math.65, 340–356 (1957)Google Scholar
  5. 5.
    Hillman, J.A.: Alexander polynomials, annihilator ideals and the Steinitz-Fox-Smythe invariant. Proc. London Math. Soc. (to appear)Google Scholar
  6. 6.
    Kearton, C.: Blanchfield duality and simple knots. Trans. Amer. Math. Soc.202, 141–160 (1975)Google Scholar
  7. 7.
    Lang, S.: Cyclotomic Fields. Graduate Texts in Mathematics59. Berlin-Heidelberg-New York: Springer 1978Google Scholar
  8. 8.
    Levine, J.: A method for generating link polynomials. Amer. J. Math.89, 69–84 (1967)Google Scholar
  9. 9.
    Levine, J.: Knot modules I. Trans. Amer. Math. Soc.229, 1–50 (1977)Google Scholar
  10. 10.
    Levine, J.: Algebraic Structure of Knot Modules. Lecture Notes in Mathematics772. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  11. 11.
    Swan, R.G.:K-theory of Finite Groups and Orders. Lecture Notes in Mathematics149. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  12. 12.
    Trotter, H.F.: Knot Modules and Seifert Matricesin Knot Theory, Plans-sur-Bex. Lecture Notes in Mathematics685 (ed. J.-C. Hausmann). Berlin-Heidelberg-New York: Springer 1978Google Scholar
  13. 13.
    Weber, C.: Torsion dans les modules d'Alexanderin Knot Theory, Plans-sur-Bex. Lecture Notes in Mathematics685 (ed. J.-C. Hausmann). Berlin-Heidelberg-New York: Springer 1978Google Scholar
  14. 14.
    Weil, A.: Basic Number Theory. Grundlehren der Mathematischen Wissenschaften144. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  15. 15.
    Quebbemann, H.-G.: Ein Endlichkeitssatz für Klassenzahlen invarianter Formen. Comment. Math. Helv.55 294–301 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Jonathan A. Hillman
    • 1
  1. 1.Mathematics DepartmentUniversity of DurhamDurhamUK

Personalised recommendations