Mathematische Zeitschrift

, Volume 190, Issue 4, pp 455–467

Normal families and the semicontinuity of isometry and automorphism groups

  • Robert E. Greene
  • Steven G. Krantz
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dieudonné, J.: Treatise on Analysis, vol. III. New York: Academic Press 1972Google Scholar
  2. 2.
    Ebin, D.: The manifold of Riemannian metrics. Proceedings of Symposia in Pure Mathematics, vol. XV (Global Analysis), A.M.S. 11–40 (1970)Google Scholar
  3. 3.
    Eisenman, D.: Intrinsic Measures on Complex Manifolds and Holomorphic Mappings. Memoirs of the A.M.S., vol. 96, Providence 1970Google Scholar
  4. 4.
    Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex domains. Invent. Math.26, 1–65 (1974)Google Scholar
  5. 5.
    Greene, R.E., Krantz, S.G.: Deformations of complex structures, estimates for the\(\bar \partial \) equation, and stability of the Bergman kernel. Adv. Math.43, 1–86 (1982)Google Scholar
  6. 6.
    Greene, R.E., Krantz, S.G.: The automorphism groups of strongly pseudoconvex domains. Math. Ann.261, 425–446 (1982)Google Scholar
  7. 7.
    Greene, R.E., Krantz, S.G.: The stability of the Caratheodory and Kobayashi metrics and applications to biholomorphic mappings. Proceedings of Symposia in Pure Math. Providence: A.M.S. vol. 41, 77–94Google Scholar
  8. 8.
    Grove, K., Karcher, H.: How to conjugateC 1-close group actions. Math. Z.132, 11–20 (1973)Google Scholar
  9. 9.
    Henkin, G.M.: An analytic polyhedron is not holomorphically equivalent to strictly pseudoconvex domain (Russian). Dokl. Acad. Nauk. USSR210, 1026–1029 (1973)Google Scholar
  10. 10.
    Hirsch, M.: Differential Topology. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  11. 11.
    Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I and II. New York: Interscience Publishers 1963.Google Scholar
  12. 12.
    Ligocka, E.: Lecture. Mathematische Forschungsinstitut Oberwolfach 1979Google Scholar
  13. 13.
    Montgomery, D., Zippin, L.: Topological Transformation Groups. New York: Interscience Publishers 1955Google Scholar
  14. 14.
    Myers, S., Steenrod, N.: The group of isometries of a Riemannian manifold. Ann. Math.40, 400–416 (1939)Google Scholar
  15. 15.
    Narasimhan, R.: Several Complex Variables. Chicago: Chicago University Press 1971Google Scholar
  16. 16.
    Rosay, J.P.: Sur une characterization de la ball parmi les domains de ℂn par son groupe d'automorphismes. Ann. Inst. Fourier29, 91–97 (1979)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Robert E. Greene
    • 1
  • Steven G. Krantz
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsThe Pennsylvanis State University, Collage of ScienceUniversity ParkUSA

Personalised recommendations