Mathematische Zeitschrift

, Volume 180, Issue 4, pp 445–461 | Cite as

On locally indicable groups

  • James Howie


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumslag, G.: Some problems on one-relator groups. Proceedings of the Second International Conference on the Theory of Groups (Canberra 1973), pp. 75–81. Lecture Notes in Mathematics372. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  2. 2.
    Brodskiî, S.D.: Equations over groups and groups with a single defining relator. Uspehi Mat. Nauk35, 4, 183 (1980) [Russian]Google Scholar
  3. 3.
    Brown, R., Huebschmann, J.: Identities among relations. In: Low Dimensional Topology vol. 1 (R. Brown and T.L. Thickstun, eds.). London Mathematical Society Lecture Note Series48, pp 153–202, Cambridge University Press 1982Google Scholar
  4. 4.
    Chiswell, I.M., Collins, D.J., Huebschmann, J.: Aspherical group presentations. Math. Z.178, 1–36 (1981)Google Scholar
  5. 5.
    Dicks, W.: Groups, trees and projective modules. Lecture Notes in Mathematics790. Berlin-Heidelberg-New York: Springer 1980Google Scholar
  6. 6.
    Fischer, J., Karrass, A., Solitar, D.: On one-relator groups having elements of finite order. Proc. Amer. Math. Soc.33, 297–301 (1972)Google Scholar
  7. 7.
    Gutierrez, M.A., Ratcliffe, J.G.: On the second homotopy group. Quart. J. Math. Oxford (2)32, 45–55 (1981)Google Scholar
  8. 8.
    Higgins, P.J.: The fundamental groupoid of a graph of groups. J. London Math. Soc. (2)13, 145–149 (1976)Google Scholar
  9. 9.
    Higman, G.: The units of groups rings. Proc. London Math. Soc. (2)46, 231–248 (1940)Google Scholar
  10. 10.
    Howie, J.: Aspherical and acyclic 2-complexes. J. London Math. Soc. (2)20, 549–558 (1979)Google Scholar
  11. 11.
    Howie, J.: On the fundamental group of an almost-acyclic 2-complex. Proc. Edinburgh Math. Soc.24, 119–122 (1981)Google Scholar
  12. 12.
    Howie, J.: On pairs of 2-complexes and systems of equations over groups. J. Reine Angew. Math.324, 165–174 (1981)Google Scholar
  13. 13.
    Howie, J., Schneebeli, H.R.: Groups of finite quasi-projective dimension. Comment. Math. Helv.54, 615–628 (1979)Google Scholar
  14. 14.
    Karrass, A., Solitar, D.: The subgroups of a free product of two groups with an amalgamated subgroup. Trans. Amer. Math. Soc.149, 227–255 (1970)Google Scholar
  15. 15.
    Kirby, R.: Problems in low-dimensional manifold theory. In: Algebraic and Geometric Topology (R.J. Milgram, ed.). Proceedings (Stanford 1976), pp. 273–312. Proceedings of Symposia in Pure Mathematics32, part 2. Providence, Rhode Island: American Mathematical Society 1978Google Scholar
  16. 16.
    Lewin, J., Lewin, T.: An embedding of the group algebra of a torsion-free 1-relator group in a field. J. Algebra52, 39–74 (1978)Google Scholar
  17. 17.
    Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete89. Berlin-Heidelberg-New York: Springer 1977Google Scholar
  18. 18.
    Milnor, J.: A unique factorisation theorem for 3-manifolds. Amer. J. Math.84, 1–7 (1962)Google Scholar
  19. 19.
    Scott, G.P.: Compact submanifolds of 3-manifolds. J. London Math. Soc. (2)7, 246–250 (1973)Google Scholar
  20. 20.
    Serre, J.-P.: Arbres, amalgames,SL 2. Astérisque46. Paris: Société Mathematique de France 1977Google Scholar
  21. 21.
    Sieradski, A.J.: Framed links for Peiffer identities. Math. Z.175, 125–137 (1980)Google Scholar
  22. 22.
    Short, H.: Topological methods in group theory: the adjunction problem. Ph. D. Thesis, University of Warwick 1981Google Scholar
  23. 23.
    Short, H.: Knot groups are locally indicable. PreprintGoogle Scholar
  24. 24.
    Weinbaum, C.M.: On relators and diagrams for groups with a single defining relator. Illinois J. Math.16, 308–322 (1972)Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • James Howie
    • 1
  1. 1.Department of MathematicsUniversity of EdinburghEdinburghUK

Personalised recommendations