Mathematische Zeitschrift

, Volume 134, Issue 4, pp 291–301 | Cite as

On some Hasse Principles over formally real fields

  • Richard Elman
  • Tsit-Yuen Lam
  • Alexander Prestel


Real Field Hasse Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arason, J.K., Pfister, A.: Beweis des Krullschen Durchschnittsatzes für den Wittring. Inventiones. Math.12, 173–176 (1971)Google Scholar
  2. 2.
    Artin, E.: Elements of Algebraic Geometry. New York: New York University, 1955Google Scholar
  3. 3.
    Bröcker, L.: Über eine Klasse pythagoriescher Körper. Arch. der Math.23, 405–407 (1972)Google Scholar
  4. 4.
    Elman, R., Lam, T.Y.: Pfister forms andK-theory of fields. J. Algebra23, 181–213 (1972)Google Scholar
  5. 5.
    Elman, R., Lam, T.Y.: Quadratic forms over formally real fields and pythagorean fields. Amer. J. Math.94, 1155–1194 (1972)Google Scholar
  6. 6.
    Elman, R., Lam, T.Y.: Quadratic forms and theu-invariant, I. Math. Z.131, 283–304 (1973)Google Scholar
  7. 7.
    Elman, R., Lam, T.Y.: Quadratic forms and theu-invariant, II. To appear in Inventiones Math.21, 125–137 (1973)Google Scholar
  8. 8.
    Elman, R., Lam, T.Y.: On the quaternion symbol homonorphismg F:k 2 FB(F). In: Proc. of the Seattle Conference on AlgebraicK-theory (1973). Springer Lecture Notes342, 447–463. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  9. 9.
    Gupta, H.N., Prestel, A.: Triangle and Schwarz inequality in Pasch-free euclidean geometry. Bull. Acad. Polon. Sci., Sér. Sci. math., astron., phys.20, 999–1003 (1972)Google Scholar
  10. 10.
    Knebusch, M., Rosenberg, A., Ware, R.: Structure of Witt rings, quotients of abelian group rings, and orderings of fields. Bull. Amer. math. Soc.77, 205–210 (1971)Google Scholar
  11. 11.
    Lam, T.Y.: The Algebraic Theory of Quadratic Forms. Benjamin, 1973Google Scholar
  12. 12.
    Pfister, A.: Quadratische Formen in beliebigen Körpern. Inventiones Math.1, 116–132 (1966)Google Scholar
  13. 13.
    Prestel, A.: Quadratische Semi-Ordnungen und quadratische Formen. To appear in Math. Z.133, 319–342 (1973)Google Scholar
  14. 14.
    Prestel, A.: Euklidische Geometrie ohne das Axiom von Pasch. To appear in Abh. math. Sem. Univ. Hamburg 41Google Scholar
  15. 15.
    Prestel, A., Ziegler, M.: Erblich euklidische Körper. To appear in J. reine angew. Math.Google Scholar
  16. 16.
    Scharlau, W.: Quadratic reciprocity laws. J. Number Theory4, 78–97 (1972)Google Scholar
  17. 17.
    Witt, E.: Theorie der quadratischen Formen in beliebigen Körpern. J. reine angew. Math.176, 31–44 (1937)Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Richard Elman
    • 1
  • Tsit-Yuen Lam
    • 2
  • Alexander Prestel
    • 3
  1. 1.University of CaliforniaLos Angeles
  2. 2.University of CaliforniaBerkeley
  3. 3.Sonderforschungsbereich Theoretische MathematikUniversität BonnBonnGermany

Personalised recommendations