Mathematische Zeitschrift

, Volume 176, Issue 3, pp 429–446 | Cite as

The topological version of groups generated by reflections

  • Eldar Straume
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A., et al.: Seminar on Transformation Groups. Annals of Math. Studies, No. 46, Princeton Univ. Press, 1960Google Scholar
  2. 2.
    Bredon, G.E.: Sheaf Theory. New York: McGraw-Hill 1967Google Scholar
  3. 3.
    Bredon, G.E.: Wilder manifolds are locally orientable. Proc. Nat. Acad. Sci. U.S.63, 1079–1081 (1969)Google Scholar
  4. 4.
    Bredon, G.E.: Groups of Diffeomorphisms Generated by Reflections. Mimeo at Rutgers Univ., New Brunswick, N.J., 1976Google Scholar
  5. 5.
    Coxeter, H.S.M.: Regular Polytopes. Methnen & London, 1948Google Scholar
  6. 6.
    Coxeter, H.S.M., Moser, W.O.J.: Generators and Relations for Discrete Groups. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  7. 7.
    Goldschmidt, D.M.: Abstract Reflections and Coxeter Groups, mimeo at Univ. of Calif. Berkeley, 1977, to appearGoogle Scholar
  8. 8.
    Hsiang, Wu-chung, Hsiang, Wy-yi: A fixed point theorem for finite diffeomorphism groups generated by reflections, in The Steenrod Algebra and its Applications, Lecture Notes in Math.169, pp. 90–106. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  9. 9.
    Hsiang, Wu-chung, Hsiang, Wu-yi: Differentiable actions of compact connected Lie groups III. Annals of Math.99, 220–256 (1974)Google Scholar
  10. 10.
    Koszul, J.L.: Lectures on Groups of Transformations. Tata Inst. of Fund. Research, Bombay, 1965Google Scholar
  11. 11.
    Koszul, J.L.: Hyperbolic Coxeter Groups, Notes from Univ. of Notre Dame, 1967Google Scholar
  12. 12.
    Kwun, K.W., Raymond, F.: Generalized cells in generalized manifolds. Proc. Amer. Math. Soc.11, 135–140 (1960)Google Scholar
  13. 13.
    Oliver, R.: Thesis, Princeton University, 1974Google Scholar
  14. 14.
    Straume, E.: Dihedral Transformation Groups of Homology Spheres, to appear in Journal of Pure and Applied AlgebraGoogle Scholar
  15. 15.
    Weyl, H.: The structure and representation of continuous groups. Notes by Richard Brauer, Inst. for Adv. Study, Princeton, 1955Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Eldar Straume
    • 1
  1. 1.Institute of Mathematical and Physical SciencesUniversity of TromsøTromsøNorway

Personalised recommendations