Mathematische Zeitschrift

, Volume 176, Issue 3, pp 311–318 | Cite as

The peripheral point spectrum of schwarz operators onC*-algebras

  • Ulrich Groh
Article

Keywords

Point Spectrum Peripheral Point Peripheral Point Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albeverio, S., Høegh-Krohn, R.: Frobenius theory for positive maps on von Neumann algebras. Commun. Math. Phys.64, 83–94 (1978)Google Scholar
  2. 2.
    Choi, M.D.: Positive linear maps onC *-algebras. Canad. J. Math.24, 520–529 (1972)Google Scholar
  3. 3.
    Dixmier, J.: Les Algèbres d'Opérateurs dans l'Espace Hilbertien, 2ème edition. Paris: Gauthier-Villars 1969Google Scholar
  4. 4.
    Dixmier, J.:C *-Algebras. Amsterdam-New York-Oxford: North Holland Publishing Company 1977Google Scholar
  5. 5.
    Effros, E.G.: Order ideals in aC *-algebra and its dual. Duke Math. J.30, 391–412 (1963)Google Scholar
  6. 6.
    Frobenius, G.: Über Matrizen aus nichtnegativen Elementen. Sitz-Berichte kgl. Preuss. Akad. Wiss. Berlin, 456–477 (1912)Google Scholar
  7. 7.
    Haagerup, U.: An example of a non nuclearC *-algebra which has the metric approximation property. Inventiones math.50, 279–293 (1979)Google Scholar
  8. 8.
    Nagel, R.J.: Mittelergodische Halbgruppen linearer Operatoren. Ann. Inst. Fourier (Grenoble)23, 75–87 (1973)Google Scholar
  9. 9.
    Pedersen, G.K.: Measure theory forC *-algebras. Math. Scand.19, 131–145 (1966)Google Scholar
  10. 10.
    Schaefer, H.H.: Spektraleigenschaften positiver linearer Operatoren. Math. Z.82, 303–313 (1963)Google Scholar
  11. 11.
    Schaefer, H.H.: Topological Vector Spaces, 3rd print. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  12. 12.
    Schaefer, H.H.: Banach Lattices and Positive Operators. Berlin-Heidelberg-New York: Springer 1974Google Scholar
  13. 13.
    Wielandt, H.: Unzerlegbare, nicht negative Matrizen. Math. Z.52, 642–648 (1950)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Ulrich Groh
    • 1
  1. 1.Mathematisches InstitutUniversität TübingenTübingenFederal Republic of Germany

Personalised recommendations