Advertisement

Communications in Mathematical Physics

, Volume 108, Issue 4, pp 535–589 | Cite as

Hyperkähler metrics and supersymmetry

  • N. J. Hitchin
  • A. Karlhede
  • U. Lindström
  • M. Roček
Article

Abstract

We describe two constructions of hyperkähler manifolds, one based on a Legendre transform, and one on a sympletic quotient. These constructions arose in the context of supersymmetric nonlinear σ-models, but can be described entirely geometrically. In this general setting, we attempt to clarify the relation between supersymmetry and aspects of modern differential geometry, along the way reviewing many basic and well known ideas in the hope of making them accessible to a new audience.

Keywords

Neural Network Manifold Statistical Physic Complex System General Setting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez-Gaumé, L., Freedman, D.Z.: In: Unification of the fundamental particle interactions. Ferrara, S., Ellis, J., van Nieuwenhuizen, P. (eds.). New York: Plenum 1980Google Scholar
  2. 1a.
    Yano, K.: Differential geometry on complex and almost complex spaces. Oxford: Pergamon 1965Google Scholar
  3. 1b.
    Yano, K., Kon, M.: Structures on manifolds. World Scientific 1984Google Scholar
  4. 2.
    Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. II. New York: Wiley 1969Google Scholar
  5. 3.
    Hull, C.M., Karlhede, A., Lindström, U., Roček, M.: Nonlinear σ-models and their gauging in and out of superspace. Nucl. Phys. B266, 1 (1986)Google Scholar
  6. 4.
    Curtright, T.L., Freedman, D.Z.: Nonlinear σ-models with extended supersymmetry in four dimensions. Phys. Lett.90B, 71 (1980)Google Scholar
  7. 4a.
    Roček, M., Townsend, P.K.: Three-loop finiteness of theN=4 supersymmetric non-linear σ-model. Phys. Lett.96B, 72 (1980)Google Scholar
  8. 5.
    Lindström, U., Roček, M.: Scalar tensor duality andN=1,2 nonlinear σ-models. Nucl. Phys. B222, 285 (1983)Google Scholar
  9. 6.
    Bagger, J., Witten, E.: Quantization of Newton's constant in certain supergravity theories. Phys. Lett. B115, 202 (1982)Google Scholar
  10. 7.
    Karlhede, A., Lindström, U., Roček, M.: Self-interacting tensor multiplets inN=2 superspace. Phys. Lett.147B, 297 (1984)Google Scholar
  11. 8.
    Roček, M.: Supersymmetry and nonlinear σ-models. Physica15D, 75 (1985)Google Scholar
  12. 9.
    Eguchi, T., Hanson, A.J.: Self-dual solutions to Euclidean gravity. Ann. Phys.120, 82 (1979)Google Scholar
  13. 10.
    Gibbons, G.W., Hawking, S.W.: Classification of gravitational instanton symmetries. Commun. Math. Phys.66, 291 (1979)Google Scholar
  14. 11.
    Calabi, E.: Métriques Kählériennes et fibrés holomorphes. Ann. Sci. Ec. Norm. Super.12, 269 (1979)Google Scholar
  15. 12.
    Guillemin, V., Sternberg, S.: Symplectic techniques in physics. Cambridge: Cambridge University Press 1984Google Scholar
  16. 13.
    Kirwan, F.: Cohomology of quotients in algebraic and symplectic geometry. Princeton Mathematical Notes, Vol. 31. Princeton, NJ: Princeton University Press 1985Google Scholar
  17. 14.
    Penrose, R.: Nonlinear gravitons and curved twistor theory. Gen. Relativ. Gravitation7, 31 (1976)Google Scholar
  18. 15.
    Salamon, S.: Quaternionic Kähler manifolds. Invent. Math.67, 143 (1982)Google Scholar
  19. 16.
    Salamon, S.: Invent. differential geometry of quaternionic manifold. Ann. Sci. Ec. Norm. Super. (to appear)Google Scholar
  20. 17.
    Newlander, A., Nirenberg, L.: Complex analytic coordinates in almost complex manifolds. Ann. Math.65, 391 (1958)Google Scholar
  21. 18.
    Kodaira, K.: A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds. Ann. Math.84, 146 (1962)Google Scholar
  22. 19.
    Meetz, K.: Realization of chiral symmetry in a curved isospin space. J. Math. Phys.10, 589 (1969)Google Scholar
  23. 19a.
    Honerkamp, J.: Chiral multi-loops. Nucl. Phys. B36, 130 (1972)Google Scholar
  24. 19b.
    Friedan, D.: Nonlinear models in 2+ε dimensions. Phys. Rev. Lett.45, 1057 (1980); Nonlinear models in 2+ε dimensions. Ann. Phys.163, 318 (1985)Google Scholar
  25. 20.
    Freedman, D.Z., van Nieuwenhuizen, P.: Properties of supergravity theory. Phys. Rev. D14, 912 (1976)Google Scholar
  26. 21.
    Fradkin, E.S., Tseytlin, A.A.: Quantum equivalence of dual field theories. Ann. Phys.162, 31 (1985)Google Scholar
  27. 22.
    Howe, P.S., Karlhede, A., Lindström, U., Roček, M.: The geometry of duality. Phys. Lett.168B, 89 (1986)Google Scholar
  28. 23.
    Ogievietsky, V., Mezincescu, L.: Boson fermion symmetries and superfields. Usp. Fiz. Nauk.117, 636 (1975) (Sov. Phys. Usp.18, 960 (1976))Google Scholar
  29. 23a.
    Fayet, P., Ferrara, S.: Supersymmetry. Phys. Rep.32C, 250 (1977)Google Scholar
  30. 23b.
    Salam, A., Strathdee, J.: Supersymmetry and superfields. Fortschr. Phys.26, 5 (1978)Google Scholar
  31. 23c.
    van Nieuwenhuizen, P.: Supergravity. Phys. Rep.68(4), 189 (1981)Google Scholar
  32. 23d.
    Wess, J., Bagger, J.: Supersymmetry and supergravity. Princeton, NJ: Princeton University Press 1983Google Scholar
  33. 23e.
    Sohnius, M.: Introducing supersymmetry. Phys. Rep.128(2, 3), 41 (1985)Google Scholar
  34. 24.
    Gates, S.J., Grisaru, M.T., Roček, M., Siegel, W.: Superspace, or one thousand and one lectures in supersymmetry. Reading, MA: Benjamin/Cummings 1983Google Scholar
  35. 25.
    Gates, S.J., Hull, C.M., Roček, M.: Twisted multiplets and new supersymmetric non-linear σ-models. Nucl. Phys. B248, 157 (1984)Google Scholar
  36. 26.
    Galperin, A., Ivanov, E., Kalitzin, S., Ogievietsky, V., Sokatchev, E.: UnconstrainedN=2 matter Yang-Mills and supergravity theories in harmonic superspace. Class. Quant. Grav.1, 496 (1984)Google Scholar
  37. 26a.
    Galperin, A., Ivanov, E., Ogievietsky, V., Sokatchev, E.: Hyperkähler metrics and harmonic superspace. Dubna preprint 1985Google Scholar
  38. 27.
    Siegel, W.: Unextended superfields in extended supersymmetry. Nucl. Phys. B156, 135 (1979)Google Scholar
  39. 28.
    Zumino, B.: Supersymmetry and Kähler manifolds. Phys. Lett.87B, 203 (1979)Google Scholar
  40. 29.
    Alvarez-Gaumé, L., Freedman, D.Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric σ-model. Commun. Math. Phys.80, 443 (1981)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • N. J. Hitchin
    • 1
  • A. Karlhede
    • 2
  • U. Lindström
    • 2
  • M. Roček
    • 3
  1. 1.Mathematical InstituteUniversity of OxfordOxfordUnited Kingdom
  2. 2.Institute of Theoretical PhysicsUniversity of StockholmStockholmSweden
  3. 3.Institute for Theoretical PhysicsState University of New YorkStony BrookUSA

Personalised recommendations