Advertisement

Mathematische Zeitschrift

, Volume 144, Issue 1, pp 55–75 | Cite as

BP operations and Morava's extraordinaryK-theories

  • David Copeland Johnson
  • W. Stephen Wilson
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, J. F.: Quillen's work on formal groups and complex cobordism. Lecture notes. University of Chicago (1970)Google Scholar
  2. 2.
    Araki, S., Toda, H.: Multiplicative structures in modq cohomology theories. I. Osaka J. Math.2, 71–115 (1965)Google Scholar
  3. 3.
    Atiyah, M. F.: Vector bundles and the Künneth formula. Topology1, 245–248 (1962)Google Scholar
  4. 4.
    Baas, N. A.: Bordism theories with singularities. In: Proceedings of the Advanced Study Institute on Algebraic Topology (Aachen, 1970), Vol. I, pp. 1–16. Various Publications Series No. 13. Aarhus: Matematisk Institut 1970Google Scholar
  5. 5.
    Baas, N. A.: On bordism theory of manifolds with singularities. Math. Scand.33, 279–302 (1973)Google Scholar
  6. 6.
    Baas, N. A., Madsen, I.: On the realization of certain modules over the Steenrod algebra. Math. Scandinav.31, 220–224 (1972)Google Scholar
  7. 7.
    Brown, E. H. Jr., Peterson, F. P.: A spectrum whose ℤp-cohomology is the algebra of reducedp-th powers. Topology5, 149–154 (1966)Google Scholar
  8. 8.
    Conner, P. E., Floyd, E. E.: The relation of cobordism toK-theories. Lecture Notes in Mathematics, No. 28. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  9. 9.
    Conner, P. E., Smith, L.: On the complex bordism of finite complexes. Inst. haut. Étud. sci. Publ. math.37, 117–221 (1969)Google Scholar
  10. 10.
    Conner, P. E., Smith, L.: On the complex bordism of finite complexes—II. J. diff. Geometry6, 135–174 (1971)Google Scholar
  11. 11.
    Hansen, I., Smith, L.: Ballentine Lemmas. Private communicationGoogle Scholar
  12. 12.
    Hazewinkel, M.: Constructing formal groups. I. Over ℤ(p)-algebra. Report of the Econometric Institute #7119. Netherlands School of Economics, 1971Google Scholar
  13. 13.
    Johnson, D. C.: A Stong-Hattori spectral sequence. Trans. Amer. math. Soc.179, 211–225 (1973)Google Scholar
  14. 14.
    Johnson, D. C., Wilson, W. S.: Projective dimension and Brown-Peterson homology. Topology12, 327–353 (1973)Google Scholar
  15. 15.
    Kamata, M.: On the differential 74-3 ofU-cobordism spectral sequence. Osaka J. Math.8, 233–241 (1971)Google Scholar
  16. 16.
    Landweber, P. S.: Annihilator ideals and primitive elements in complex bordism. Illinois J. Math.17, 273–284 (1973)Google Scholar
  17. 17.
    Morava, J.: Structure theorems for cobordism comodules. PreprintGoogle Scholar
  18. 18.
    Morava, J.: Unitary Cobordism and ExtraordinaryK-theories. Columbia University 1971 (unpublished)Google Scholar
  19. 19.
    Morava, J.: Lectures given at Princeton University, Fall 1973 (unpublished)Google Scholar
  20. 20.
    Morava, J.: Private CommunicationGoogle Scholar
  21. 21.
    Quillen, D.: On the formal group laws of unoriented and complex cobordism theory. Bull. Amer. Math. Soc.75, 1293–1298 (1969)Google Scholar
  22. 22.
    Smith, L.: On realizing complex bordism modules. Amer. J. Math.92 793–856 (1970)Google Scholar
  23. 23.
    Smith, L.: On realizing complex bordism modules II. Amer. J. Math.93, 226–263 (1971)Google Scholar
  24. 24.
    Smith, L., Zahler, R.: Detecting stable homotopy classes by primaryBP Cohomology Operations. Math. Z.129, 137–156 (1972)Google Scholar
  25. 25.
    Stong, R. E.: Relations among characteristic numbers I. Topology4, 267–281 (1965)Google Scholar
  26. 26.
    Sullivan, D.: Singularities in spaces, Proceedings of Liverpool Singularities Symposium II. Lecture Notes in Mathematics, No. 209. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  27. 27.
    Toda, H.: On spectra realizing exterior parts of the Steenrod algebra. Topology10, 53–65 (1971)Google Scholar
  28. 28.
    Wilson, W. S.: The Ω-spectrum for Brown-Peterson cohomology II. Amer. J. Math. (to appear)Google Scholar
  29. 29.
    Zahler, R.: The Adams-Novikov spectral sequence for the spheres. Ann. of Math. II. Ser.96, 480–504 (1972)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • David Copeland Johnson
    • 1
  • W. Stephen Wilson
    • 2
    • 3
  1. 1.Department of MathematicsUniversity of KentuckyLexingtonUSA
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA
  3. 3.The Institute of Advanced StudyPrincetonUSA

Personalised recommendations