Advertisement

Mathematische Zeitschrift

, Volume 143, Issue 3, pp 289–297 | Cite as

Eigenvalue comparison theorems and its geometric applications

  • Shiu-Yuen Cheng
Article

Keywords

Comparison Theorem Geometric Application Eigenvalue Comparison Eigenvalue Comparison Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berger, M., Gauduchon, P., Mazet, E.: Le spectre d'une variété Riemannienne. Lecture Notes in Mathematics 194. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  2. 2.
    Bishop, R., Crittenden, R.: Geometry of Manifolds. New York-London: Academic Press 1964Google Scholar
  3. 3.
    Chavel, I., Feldman, E.: The first eigenvalue of the Laplacian on manifolds of non-negative curvature. CUNY preprintGoogle Scholar
  4. 4.
    Cheeger, J.: The relation between the Laplacian and the diameter for manifolds of non-negative curvature. Arch. der Math.19, 558–560 (1968)Google Scholar
  5. 5.
    Cheng, S. Y.: Eigenvalue and eigenfunctions of the Laplacian. To appear in the Proceedings of the Symposium on Differential Geometry. (Stanford University, 1973)Google Scholar
  6. 6.
    Hobson, E.W.: Spherical and Ellipsoidal Harmonics. New York: Chelsea 1955Google Scholar
  7. 7.
    Klingenberg, W.: Contribution to Riemannian geometry in the large. Ann. of Math., II. Ser.69, 654–666 (1959)Google Scholar
  8. 8.
    Mazet, E.: Une majoration de λ1 du type de Cheeger. C.r. Acad. Sci., Paris, Sér. A,277, 171–174 (1973)Google Scholar
  9. 9.
    McKean, H.P. Jr.: An upper bound to the spectrum on a manifold of negative curvature. J. diff. Geometry4, 359–366 (1970)Google Scholar
  10. 10.
    Payne, L.E.: Isoperimetric inequalities and their applications. SIAM Review9, 453–488 (1967)Google Scholar
  11. 11.
    Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge: Cambridge University Press 1944; New York: MacMillan 1944Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • Shiu-Yuen Cheng
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations