Mathematische Zeitschrift

, Volume 168, Issue 2, pp 181–205 | Cite as

Über gewisse Galoiscohomologiegruppen

  • Peter Schneider
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Artin, E., Tate, J.: Class field theory. New York-Amsterdam: Benjamin 1968Google Scholar
  2. 2.
    Birch, B.:K 2 of global fields. In: Institute on Number Theory. Proc. Symp. Pure Math. XX (New York 1969), pp. 87–95. Providence: American Mathematical Society 1971Google Scholar
  3. 3.
    Brumer, A.: On the units of algebraic number fields. Mathematika14, 121–124 (1967)Google Scholar
  4. 4.
    Coates, J.: OnK 2 and some classical conjectures in algebraic number theory. Ann. of Math.95, 99–116 (1972)Google Scholar
  5. 5.
    Coates, J.:p-adicL-functions and Iwasawa's theory. In: Fröhlich, Algebraic Number Fields. Proceedings of a Symposium (Durham 1975), pp. 269–353. New York-London: Academic Press 1977Google Scholar
  6. 6.
    Garland, H.: A finiteness theorem forK 2 of a number field. Ann. of Math.94, 534–548 (1971)Google Scholar
  7. 7.
    Greenberg, R.: Onp-adicL-functions and cyclotomic fields. Nagoya Math. J.56, 61–77 (1974)Google Scholar
  8. 8.
    Haberland, K.: Zu Tate's Dualitätssatz in der Galois-Cohomologie über Zahlkörpern. Dissertation, Berlin 1975Google Scholar
  9. 9.
    Iwasawa, K.: On ℤt of algebraic number fields. Ann. of Math.98, 246–326 (1973)Google Scholar
  10. 10.
    Kaplansky, I.: Infinite Abelian Groups. Ann Arbor: University of Michigan Press 1969Google Scholar
  11. 11.
    Koch, H.: Galoissche Theorie derp-Erweiterungen. Berlin: Deutscher Verlag der Wissenschaften 1970Google Scholar
  12. 12.
    Kubota, T.: Galois group of the maximal Abelian extension over an algebraic number field. Nagoya Math. J.12, 177–189 (1957)Google Scholar
  13. 13.
    Kuz'min, L.V.: The Tate module for algebraic number fields. Izw. Akad. Nauk SSSR Ser. Mat.36, 267–327 (1972) [russ.]; engl. Transl.: Math. USSR-Izv.6, 263–321 (1972)Google Scholar
  14. 14.
    Lenstra, H.W.:K 2 of a global field consists of symbols. In: AlgebraicK-Theory. Proceedings of a Conference (Evanston 1976), pp. 69–73. Lecture Notes in Mathematics551. Berlin-Heidelberg-New York: Springer 1976Google Scholar
  15. 15.
    Miki, H.: On the maximal Abelianl-extension of a finite algebraic number field with given ramification. Nagoya Math. J.70, 183–202 (1978)Google Scholar
  16. 16.
    Neukirch, J.: Einbettungsprobleme mit lokaler Vorgabe und freie Produkte lokaler Galoisgruppen. J. Reine Angew. Math.259, 1–47 (1973)Google Scholar
  17. 17.
    Neukirch, J.: Über das Einbettungsproblem der algebraischen Zahlentheorie. Invent. Math.21, 59–116 (1973)Google Scholar
  18. 18.
    Onabe, M.: On the Isomorphisms of the Galois Groups of the Maximal Abelian Extensions of Imaginary Quadratic Fields. Natur. Sci. Rep. Ochanomizu Univ.27, 155–161 (1976)Google Scholar
  19. 19.
    Serre, J.-P.: Classes des corps cyclotomiques. Séminaire Bourbaki 1958, exp. 174Google Scholar
  20. 20.
    Serre, J.-P.: Corps locaux. Paris: Hermann 1962Google Scholar
  21. 20a.
    CG. Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Mathematics 5. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  22. 21.
    Takahashi, T.: On Extensions with Given Ramification. Proc. Japan Acad.44, 771–775 (1968)Google Scholar
  23. 22.
    Tate, J.: Duality theorems in Galois cohomology over number fields. In: Proceedings of the International Congress of Mathematicans (Stockholm 1962), pp. 288–295. Uppsala: Almquist-Wiksells 1963Google Scholar
  24. 23.
    Tate, J.: On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Séminaire Bourbaki 1965/66, exp. 306. New York-Amsterdam: Benjamin 1966Google Scholar
  25. 24.
    Tate, J.: Symbols in arithmetic. In: Actes du Congrès International des Mathématiciens (Nice 1970) Some1, pp. 201–211. Paris: Gauthier-Villars 1971Google Scholar
  26. 25.
    Tate, J.: The Milnor ring of a global field. Appendix. In: AlgebraicK-Theory II. Proceedings of a Conference (Seattle 1972), pp. 429–446. Lecture Notes in Mathematics342. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  27. 26.
    Tate, J.: Letter to Iwasawa. In: AlgebraicK-Theory II. Proceedings of a Conference (Seattle 1972), pp. 524–527. Lecture Notes in Mathematics342. Berlin-Heidelberg-New York: Springer 1973Google Scholar
  28. 27.
    Tate, J.: Relations betweenK 2 and Galois Cohomology. Invent. Math.36, 257–274 (1976)Google Scholar
  29. 27a.
    CL. Coates, J., Lichtenbaum, S.: Onl-adic zeta functions. Ann. of Math.98, 498–550 (1973)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Peter Schneider
    • 1
  1. 1.Fachbereich Mathematik der UniversitätRegensburgBundesrepublik Deutschland

Personalised recommendations