Advertisement

Mathematische Zeitschrift

, Volume 136, Issue 3, pp 193–242 | Cite as

On the modular representations of the general linear and symmetric groups

  • Roger W. Carter
  • George Lusztig
Article

Keywords

General Linear Symmetric Group Modular Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atiyah, M.F.:K-theory. New York-Amsterdam: Benjamin 1967Google Scholar
  2. 2.
    Borel, A., Carter, R., Couties, C.W., Iwahori, N., Springer, T.A., Steinberg, R.: Seminar on Algebraic Groups and Related Finite Groups (Part A). Lecture Notes in Mathematics 131. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  3. 3.
    Braden, B.: Restricted representations of classical Lie algebras of typeA 2 andB 2. Bull. Amer. math. Soc.73, 482–486 (1967)Google Scholar
  4. 4.
    Carter, R.W.: Simple groups of Lie type. New York: J. Wiley and Sons 1972Google Scholar
  5. 5.
    Dixmier, J.: Certaines représentations infinies des algèbres de Lie semi-simples. Séminaire Bourbaki 1972/73, no. 425. Paris: Secrétariat mathématiqueGoogle Scholar
  6. 6.
    Humphreys, J.E.: Modular representations of classical Lie algebras and semisimple groups. J. Algebra19, 51–79 (1971)Google Scholar
  7. 7.
    Humphreys, J.E.: Introduction to Lie algebras and Representation Theory. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  8. 8.
    Kerber, A.: Representations of permutation groups I. Lecture Notes in Mathematics 240. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  9. 9.
    Kostant, B.: Groups over 242-1. In: Proceedings of Symposia in Pure Mathematics. Vol. IX (Boulder 1965), Algebraic Groups and Discontinuous Subgroups. pp 90–98. Providence: American Mathematical Society 1966Google Scholar
  10. 10.
    Peel, M.H.: Hook representations of the symmetric group. Glasgow math. J.,12, 136–149 (1971)Google Scholar
  11. 11.
    Robinson, G. de B.: Representation theory of the symmetric group. Edinburgh University Press 1961Google Scholar
  12. 12.
    Shapovalov, N.N.: On a certain bilinear form on the enveloping algebra of a complex semisimple Lie algebra (Russian). Funkcional'. Analiz Priloženija6, 65–70 (1972)Google Scholar
  13. 13.
    Thrall, R.M.: On the decomposition of modular tensors II. Ann. of Math. II. Ser.45, 639–657 (1944)Google Scholar
  14. 14.
    Verma, D.N.: Rôle of the affine Weyl groups ..., To appear in Proceedings of the Budapest Summer School on Group Representations, 1971Google Scholar
  15. 15.
    Weyl, H.: Classical groups, their invariants and representations. Princeton: Princeton University Press 1939Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Roger W. Carter
    • 1
  • George Lusztig
    • 1
  1. 1.Mathematics InstituteUniversity of WarwickCoventryEngland

Personalised recommendations