Mathematische Zeitschrift

, Volume 166, Issue 2, pp 165–181

Nilpotency in classical groups over a field of characteristic 2

  • Wim H. Hesselink
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Borel, A.: Linear algebraic groups. New York: Benjamin 1969Google Scholar
  2. 2.
    Chevalley, C.C.: The algebraic theory of spinors. New York: Columbia University Press 1954Google Scholar
  3. 3.
    Gerstenhaber, M.: Dominance over the classical groups. Ann. of Math.74, 532–569 (1961)Google Scholar
  4. 4.
    Hesselink, W.H.: Singularities in the nilpotent scheme of a classical group. Trans. Amer. Math. Soc.222, 1–32 (1976)Google Scholar
  5. 5.
    Northcott, D.G.: Injective envelopes and inverse polynomials. J. London Math. Soc. (2)8, 290–296 (1974)Google Scholar
  6. 6.
    Spaltenstein, N.: Sous-groupes de Borel contenant un unipotent donné. Preprint, Warwick 1977Google Scholar
  7. 7.
    Springer, T.A.: Over symplectische transformaties. Thesis, University of Leiden 1951Google Scholar
  8. 8.
    Springer, T.A.: Somce arithmetical results on semi-simple Lie algebras. Inst. Hautes Études Sci. Publ. Math.30, 475–501 (1966)Google Scholar
  9. 9.
    Springer, T. A., Steinberg, R.: Conjugacy classes. In: Seminar on algebraic groups and related finite groups, pp. 167–266. Lecture Notes in Mathematics 131. Berlin-Heidelberg-New York: Springer 1970Google Scholar
  10. 10.
    Wall, G.E.: On the conjugacy classes in the unitary, symplectic and orthogonal groups. J. Austral. Math. Soc.3, 1–62 (1963).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Wim H. Hesselink
    • 1
  1. 1.Mathematisch InstituutRijksuniversiteit GroningenGroningenNetherlands

Personalised recommendations