Mathematische Zeitschrift

, Volume 132, Issue 3, pp 183–203 | Cite as

Blow-up theorems for nonlinear wave equations

  • Robert T. Glassey


Wave Equation Nonlinear Wave Nonlinear Wave Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. New York: Dover Publications 1965.Google Scholar
  2. 2.
    Berger, M. S.: On Morse Theory and Stationary States for Nonlinear Wave Equations. Bull. Amer. math. Soc.76, 827–829 (1970).Google Scholar
  3. 3.
    Berger, M. S.: On the Existence and Structure of Stationary States for a Nonlinear Klein-Gordan Equation. J. functional Analysis9, 249–261 (1972).Google Scholar
  4. 4.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, Vols. I and II. New York: Interscience, 1966.Google Scholar
  5. 5.
    Fujita, H.: On the Blowing-up of Solutions of the Cauchy Problem foru tu+u 1+α. J. Fac. Sci., Univ. Tokyo, Sect. I A.13, 109–124 (1966).Google Scholar
  6. 6.
    Fujita, H.: On Some Nonexistence and Nonuniqueness Theorems for Nonlinear Parabolic Equations. In: Proceedings of the Symposium in Pure Mathematics. Vol. XVIII. Nonlinear Functional Analysis. Providence: Amer. math. Soc. 1968.Google Scholar
  7. 7.
    Garabedian, P. R.: Partial Differential Equations. New York: Wiley, 1967.Google Scholar
  8. 8.
    Jörgens, K.: Über die nichtlinearer Wellengleichungen der mathematischen Physik. Math. Ann.138, 179–202 (1959).Google Scholar
  9. 9.
    Jörgens, K.: Das Anfangswertproblem im Großen für eine Klasse nichtlinearer Wellengleichungen. Math. Z.77, 295–308 (1961).Google Scholar
  10. 10.
    Jörgens, K.: Nonlinear Wave Equations. Lecture Notes, Univ. of Colorado, March, 1970.Google Scholar
  11. 11.
    Kaplan, S.: On the Growth of Solutions of Quasilinear Parabolic Equations. Commun. pure appl. Math.,16, 327–330 (1963).Google Scholar
  12. 12.
    Keller, J. B.: On Solutions of Nonlinear Wave Equations. Commun. pure appl. Math.,10, 523–530 (1957).Google Scholar
  13. 13.
    Levine, H. A.: Instability and Nonexistence of Global Solutions to Nonlinear Wave Equations of the formPu tt=−Au+F(u). Geneva: Battelle Advanced Studies Center, No. 62 (1972).Google Scholar
  14. 14.
    Morawetz, C. S., Strauss, W. A.: Decay and Scattering of Solutions of a Nonlinear Relativistic Wave Equation. Commun. pure appl. Math.,25, 1–31 (1972).Google Scholar
  15. 15.
    Strauss, W. A.: Decay and Asymptotics for □u=F(u). J. functional Analysis2, 409–457 (1968).Google Scholar
  16. 16.
    Strauss, W. A.: On Weak Solutions of Semilinear Hyperbolic Equations. Anais Acad. Brasil. Ci.42, 645–651 (1970).Google Scholar
  17. 17.
    Strauss, W. A.: The Energy Method in Nonlinear Partial Differential Equations. Brasil: Inst. Mat. Pura e Aplicada 1969.Google Scholar
  18. 18.
    Tsutsumi, M.: Existence and Nonexistence of Global Solutions for Nonlinear Parabolic Equations. (Manuscript).Google Scholar

Copyright information

© Springer-Verlag 1973

Authors and Affiliations

  • Robert T. Glassey
    • 1
  1. 1.Dept. of MathematicsIndiana UniversityBloomingtonUSA

Personalised recommendations