Advertisement

Formal Aspects of Computing

, Volume 6, Supplement 1, pp 826–845 | Cite as

Model-checking discrete duration calculus

  • Michael R. Hansen
Article

Abstract

Duration Calculus was introduced in [ZHR91] as a logic to specify and reason about requirements for real-time systems. It is an extension of Interval Temporal Logic [Mos85] where one can reason about integrated constraints over time-dependent and Boolean valued states without explicit mention of absolute time. Several major case studies, e.g. the gas burner system in [RRH93], have shown that Duration Calculus provides a high level of abstraction for both expressing and reasoning about specifications. Using Timed Automata [A1D92] one can express how real-time systems can be constructed at a level of detail which is close to an actual implementation. We consider in the paper the correctness of Timed Automata with respect to Duration Calculus formulae. For a subset of Duration Calculus, we show that one can automatically verify whether a Timed Automaton ℳ is correct with respect to a formulaD, abbreviated ℳ ⊨D, i.e. one can domodel-checking. The subset we consider is expressive enough to formalize the requirements to the gas burner system given in [RRH93]; but only for a discrete time domain. Model-checking is done by reducing the correctness problem ℳ ⊨D to the inclusion problem of regular languages.

Keywords

Real-time Model-checking Logic Timed automata 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [ACD90]
    Alur R., Courcoubetis C. and Dill D.: Model-Checking for Real-Time Systems. InFifth Annual IEEE Symp. on Logic in Computer Science, 1990, pp. 414–425.Google Scholar
  2. [AlD92]
    Alur R. and Dill D.: The Theory of Timed Automata. InReal-Time: Theory in Practice, J.W. de Bakker, C. Huizing, W.P. de Roever and G. Rozenberg (eds), LNCS 600, Springer-Verlag 1992, pp. 45–73.Google Scholar
  3. [ACH93]
    Alur R., Courcoubetis C, Henzinger T. and Ho P-H.: Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems. InHybrid Systems, R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel (eds), LNCS 736, Springer-Verlag 1993, pp. 209–229.Google Scholar
  4. [Bac90]
    Back R.J.R.: Refinement Calculus, Part II: Parallel and Reactive Programs. InStepwise Refinements of Distributed Systems: Models, Formalisms, Correctness, J.W. de Bakker, W.-P. de Roever and G. Rozenberg (eds), LNCS 430, Springer-Verlag 1990, pp. 67–93.Google Scholar
  5. [Bau93]
    Bauer R.:Model-checking for Duration Calculus, Oldenburg University, May 1993. (In German).Google Scholar
  6. [BER94]
    Bouajjani A., Echahed R. and Robbana R.:Verifying Invariance Properties of Timed Systems with Duration Variables, Report from VERIMAG-SPECTRE, Miniparc-Zirst, Rue Lavoisier, 38330 Montbonnot St-Martin, France, 1994.Google Scholar
  7. [BES93]
    Bouajjani A., Echahed R. and Sifakis J.: On Model Checking for Real-Time Properties with Durations. InEigth Annual IEEE Symp. on Logic in Computer Science, 1993, pp. 147–159.Google Scholar
  8. [BOF93]
    Bowen J., Olderog E.-R., Fränzle M. and Ravn A.P.: Developing Correct Systems. InProc. Fifth Euromicro Workshop on Real-Time Systems, IEEE Computer Society Press 1993, pp. 176–187.Google Scholar
  9. [CES86]
    Clarke, E.M., Emerson, E.A. and Sistla, A.P.: Automatic Verification of Finite State Concurrent Systems using Temporal Logic.ACM Trans. on Programming Languages and Systems, 8(2), 244–263, (1986).CrossRefzbMATHGoogle Scholar
  10. [EKM93]
    Engel M., Kubica M., Madey J., Parnas D.L., Ravn A.P. and Schouwen AJ. van: A Formal Approach to Computer Systems Requirements Documentation. InHybrid Systems, R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel (eds), LNCS 736, Springer-Verlag 1993, pp. 252–474.Google Scholar
  11. [HMM83]
    Halpern J., Moszkowski B. and Manna Z.: A Hardware Semantics Based on Temporal Intervals. InICALP'83, J. Diaz (ed), LNCS 154, Springer-Verlag 1983, pp. 278–291.Google Scholar
  12. [HaZ92]
    Hansen M.R. and Zhou Chaochen: Semantics and Completeness of Duration Calculus. InReal-Time: Theory in Practice, J. W. de Bakker, C. Huizing, W.-P. de Roever and G. Rozenberg (eds), LNCS 600, Springer-Verlag 1992, pp. 209–225.Google Scholar
  13. [HaO93]
    Hansen M.R. and Olderog E.-R.:Constructing Circuits from Decidable Duration Calculus, Oldenburg University, April 1993.Google Scholar
  14. [KPS93]
    Kesten Y., Pnueli A., Sifakis J. and Yovine S.: Integration Graphs: A Class of Decidable Hybrid Systems. InHybrid Systems, R.L. Grossman, A. Nerode, A.P. Ravn and H. Rischel (eds), LNCS 736, Springer-Verlag 1993, pp. 179–208.Google Scholar
  15. [Koy90]
    Koymans, R.: Specifying real-time properties with metric temporal logic.Real-Time Systems, 2(4), 255–299, (1990).CrossRefGoogle Scholar
  16. [MRR93]
    Masiero P.C., Ravn A.P. and Rischel H.:Refinement of Real-Time Specifications. ProCoS II ESPRIT BRA 7071 report no. ID/DTH PCM 1/1, Department of Computer Science, Technical University of Denmark, 1993.Google Scholar
  17. [Mor90]
    Morgan C.:Programming from Specifications, Prentice Hall International, 1990.Google Scholar
  18. [Mos85]
    Moszkowski, B.: A Temporal Logic for Multilevel Reasoning about Hardware.IEEE Computer, 18(2), 10–19, 1985.CrossRefGoogle Scholar
  19. [NSY92]
    Nicollin X., Sifakis J. and Yovine S.: From ATP to Timed Graphs and Hybrid Systems. InReal-Time: Theory in Practice, J. W. de Bakker, C. Huizing, W.-P. de Roever and G. Rozenberg (eds), LNCS 600, Springer-Verlag 1992, pp. 549–572.Google Scholar
  20. [Old91]
    Olderog E.-R.:Nets, Terms and Formulas: Three Views of Concurrent Processes and Their Relationship, Cambridge University Press, 1991.Google Scholar
  21. [OSR93]
    Owre S, Shankar N. and Rushby J.M.:User Guide for the PVS Specification and Verification System, Language, and Proof Checker (Beta Release). Computer Science Laboratory, SRI International report (three volumes), Menlo Park, CA 94025, USA, 1993.Google Scholar
  22. [RDM93]
    Ramakrishna Y.S., Dillon L.K., Moser L.E., Melliar-Smith P.M. and Kutty G.: A Real-Time Interval Logic and Its Decision Procedure. InProc. Foundations of Software Technology and Theoretical Computer Science, R.K. Shyamasundar (ed), LNCS 761, Springer-Verlag, 1993, pp. 173–192.Google Scholar
  23. [RRH93]
    Ravn, A.P., Rischel, H. and Hansen, K.M.: Specifying and Verifying Requirements of Real-Time Systems.IEEE Trans. Softw. Eng., 19(1), 41–55, (1993).CrossRefGoogle Scholar
  24. [R0P86]
    Rosner R. and Pnueli A.: A Choppy Logic. InProc. First Annual IEEE Symp. on Logic in Computer Science, 1986, pp. 306–313.Google Scholar
  25. [Ska93]
    Skakkebæk J.U.: Private communications, April 1993.Google Scholar
  26. [SkS94]
    Skakkebæk J.U. and Sestoft P.:Checking Validity of Duration Calculus Formulas. ProCoS II, ESPRIT BRA 7071, report no. ID/DTH JUS 3/1, Department of Computer Science, Technical University of Denmark, 1994.Google Scholar
  27. [SkS93]
    Skakkebæk, J.U. and Shankar, N.:A Duration Calculus Proof Checker: Using PVS as a Semantic Framework. Report no. SRI-CSL-93-10, Computer Science Laboratory, SRI International, Menlo Park, CA 94025, USA 1993.Google Scholar
  28. [SRR92]
    Skakkebæk J.U., Ravn A.P., Rischel H. and Zhou Chaochen: Specification of Embedded, Real-Time Systems. InProc. Fourth Euromicro Workshop on Real-Time Systems, IEEE Computer Society Press 1992, pp. 116–121.Google Scholar
  29. [ZHS93]
    Zhou Chaochen, Hansen M.R. and Sestoft P.: Decidability and Undecidability Results for Duration Calculus. InSTACS'93, P. Enjalbert, A. Finkel and K.W. Wagner (eds) LNCS 665, Springer-Verlag 1993, pp. 58–68.Google Scholar
  30. [ZHR91]
    Zhou, Chaochen, Hoare, C.A.R. and Ravn, A.P.: A Calculus of Durations. InInformation Processing Letters, 40(5), 269–276, (1991).CrossRefzbMATHMathSciNetGoogle Scholar
  31. [ZZY93]
    Zhou Chaochen, Zhang Jingzhong, Yang Lu and Li Xiaoshan:Linear Duration Invariants. UNU/IIST Report no. 11, UNU/IIST, P.O. Box 3058, Macau, 1993.Google Scholar
  32. [ZhL94]
    Zhou Chaochen and Li Xiaoshan: A Mean Value Calculus of Durations. InA Classical Mind: Essays in Honour of C.A.R. Hoare, A.W. Roscoe (ed), Prentice Hall International 1994, pp. 431–451.Google Scholar

Copyright information

© British Computer Society 1994

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnical University of DenmarkLyngbyDenmark

Personalised recommendations