Communications in Mathematical Physics

, Volume 97, Issue 3, pp 331–359 | Cite as

The low density limit for anN-level system interacting with a free bose or fermi gas

  • R. Dümcke


It is proved that the reduced dynamics of anN-level system coupled to a free quantum gas converges to a quantum dynamical semigroup in the low density limit. The proof uses a perturbation series of the quantum BBGKY-hierarchy, and the analysis of this series is based on scattering theory. The limiting semigroup contains the full scattering cross section, but it does not depend on the statistics of the reservoir. The dynamics of the semigroup is discussed.


Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grad, H.: Principles of the kinetic theory of gases. In: Handbuch der Physik, Vol. 12, Flügge, S. (ed.), Berlin, Heidelberg, New York: Springer 1958Google Scholar
  2. 2.
    Lanford, O. E.: Time evolution of large classical systems. In: Dynamical Systems, Theory and Applications, Moser, J. (ed.), Berlin, Heidelberg, New York: Springer 1975Google Scholar
  3. 3.
    Lanford, O. E.: On a derivation of the Boltzmann equation. Astérisque40, Soc. Math. de France (1976)Google Scholar
  4. 4.
    King, F.: Ph.D. Thesis, University of California, Berkeley (1975)Google Scholar
  5. 5.
    Spohn, H.: The Lorentz process converges to a random flight process. Commun. Math. Phys.60, 277–290 (1978)Google Scholar
  6. 6.
    Lebowitz, J. L., Spohn, H.: Steady state self-diffusion at low density. J. Stat. Phys.29, 39–55 (1982)Google Scholar
  7. 7.
    Boldrighini, C., Bunimovich, L. A., Sinai, Ya. G.: On the Boltzmann equation for the Lorentz gas. Camerino University 1983 (Preprint)Google Scholar
  8. 8.
    Uehling, E. A., Uhlenbeck, G. E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. I. Phys. Rev.43, 552–561 (1933)Google Scholar
  9. 9.
    Mori, H., Ono, S.: The quantum-statistical theory of transport phenomena, I. Prog. Theor. Phys.8, 327–340 (1952); Mori, H.: The quantum-statistical theory of transport phenomena, II. Prog. Thoer. Phys.9, 473–491 (1953) Ono, S.: The quantum-statistical theory of transport phenomena, III. Prog. Theor. Phys.12, 113–128 (1954)Google Scholar
  10. 10.
    Ross, J., Kirkwood, J. G.: The statistical-mechanical theory of transport processes. VIII. Quantum theory of transport in gases. J. Chem. Phys.22, 1094–1103 (1954)Google Scholar
  11. 11.
    Sáenz, A. W.: Transport equation in quantum statistics for spinless molecules. Phys. Rev.105, 546–558 (1957)Google Scholar
  12. 12.
    Mori, H., Ross, J.: Transport equation in quantum gases. Phys. Rev.109, 1877–1882 (1958)Google Scholar
  13. 13.
    Lewis, R. M.: Quantum statistics and the Boltzmann equation. J. Math. Phys.3, 1229–1246 (1962)Google Scholar
  14. 14.
    Hoffman, D. K., Mueller, J. J., Curtiss, C. F.: Quantum-mechanical Boltzmann equation. J. Chem. Phys.43, 2878–2884 (1965)Google Scholar
  15. 15.
    Kadanoff, L. P., Baym, G.: Quantum statistical mechanics. New York: Benjamin 1962Google Scholar
  16. 16.
    Prugovečki, E.: A quantum-mechanical Boltzmann equation for one-particleΓ s-distribution functions. Physica91A, 229–248 (1978)Google Scholar
  17. 17.
    Wittwer, P.: Zur Quantenmechanik der Boltzmanngleichung. Diplom Thesis, ETH Zürich (1980)Google Scholar
  18. 18.
    Palmer, P. F.: The rigorous theory of infinite quantum mechanical systems—Master equations and the dynamics of open systems. D. Phil. Thesis, Oxford University (1976)Google Scholar
  19. 19.
    Davies, E. B.: Markovian master equations. Commun. Math. Phys.39, 91–110 (1974)Google Scholar
  20. 20.
    Davies, E. B.: Markovian master equations II. Math. Ann.219, 147–158 (1976)Google Scholar
  21. 21.
    Gorini, V., Kossakowski, A.:N-level system in contact with a singular reservoir. J. Math. Phys.17, 1298–1305 (1976)Google Scholar
  22. 22.
    Frigerio, A., Gorini, V.:N-level system in contact with a singular reservoir. II. J. Math. Phys.17, 2123–2127 (1976)Google Scholar
  23. 23.
    Hugenholtz, N. M.: Derivation of the Boltzmann equation for a Fermi gas, J. Stat. Phys.32, 231–254 (1983)Google Scholar
  24. 24.
    Reed, M., Simon, B.: Methods of modern mathematical physics III: Scattering theory, New York: Academic Press 1979Google Scholar
  25. 25.
    Bloch, C.: Diagram expansions in quantum statistical mechanics. In: Studies in Statistical Mechanics, Vol. III, de Boer, J., Uhlenbeck, G.E. (eds.). Amsterdam: North Holland 1965Google Scholar
  26. 26.
    Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys.48, 119–130 (1976)Google Scholar
  27. 27.
    Hunzicker, W.: Cluster properties of multiparticle systems. J. Math. Phys.6, 6–10 (1965)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • R. Dümcke
    • 1
  1. 1.Fachbereich PhysikUniversität MünchenMünchenFederal Republic of Germany

Personalised recommendations