Acta Informatica

, Volume 31, Issue 6, pp 559–571

Information theoretic approximations for theM/G/1 retrial queue

  • G. I. Falin
  • M. Martìn Dìaz
  • J. R. Artalejo
Article
  • 49 Downloads

Abstract

In this paper we present information theoretic approximations for theM/G/1 queue with retrials. Various approximations for this model are obtained according to the available information about the service time probability density and the steady-state distribution of the system state. The results are well-suited for numerical computation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agmon, N., Alhassid, Y., Levine, R.D.: An algorithm for finding the distribution of maximal entropy. J. Comput. Phys.30, 250–258 (1979)Google Scholar
  2. Aleksandrov, A.: A queueing system with repeated orders. Eng. Cybern. Rev.12, 1–4 (1974)Google Scholar
  3. Alfa, A.S.: Approximating queue lengths inM(t)/D/1 queues. Eur. J. Oper. Res.44, 60–66 (1990)Google Scholar
  4. Alhassid, Y., Agmon, N., Levine, R.: An upper bound for the entropy and its applications to the maximal entropy problem. Chem. Phys. Lett.53, 22–26 (1978)Google Scholar
  5. Artalejo, J.R.: Explicit formulae for the characteristics of theM/H 2/1 retrial queue. J. Oper. Res. Soc.44, 309–313 (1993)Google Scholar
  6. Bunday, B.D.: Basic optimization methods. London: Edward Arnold 1984Google Scholar
  7. Csiszar, I.:I-Divergence geometry of probability distributions and minimization problems. Ann. Probab.3, 146–158 (1975)Google Scholar
  8. Dykstra, R.: An iterative procedure for obtainingI-projections onto the intersection of convex sets. Ann. Probab.13, 975–984 (1985)Google Scholar
  9. El-Affendi, M.A., Kouvatsos, D.D.: A maximum entropy analysis of theM/G/1 andG/M/1 queueing systems at equilibrium. Acta Inf.19, 339–355 (1983)Google Scholar
  10. Falin, G.: Aggregate arrival of customers in a one-line system with repeated calls. Ukr. Math. J.28, 437–440 (1976)Google Scholar
  11. Falin, G.: A single-line system with secundary orders. Eng. Cybern. Rev.17, 76–83 (1979)Google Scholar
  12. Falin, G.: A survey of retrial queues. Queueing Syst.7, 127–168 (1990)Google Scholar
  13. Fredericks, A., Reisner, G.: Approximations to stochastic service systems, with an application to a retrial model. Bell Syst. Techn. J.58, 557–576 (1979).Google Scholar
  14. Greenberg, B.:M/G/1 queueing systems with returing customers. J. Appl. Probab.26, 152–163 (1989)Google Scholar
  15. Hanschke, T.: Explicit formulas for the characteristics of theM/M/2/2 queue with repeated attemps. J. Appl. Probab.24, 486–494 (1987)Google Scholar
  16. Keilson, J., Cozzolino, J., Young, H.: A service system with unfilled requests attemps. Oper. Res.16, 1126–1137 (1968)Google Scholar
  17. Kok, A.G. de: Algorithmic methods for single server systems with repeated attemps. Stat. Neerl.38, 23–32 (1984)Google Scholar
  18. Kouvatsos, D.D., Tabet-Aouel, N.: A maximum entropy priority approximation for a stableG/G/1 queue. Acta Inf.27, 247–286 (1989)Google Scholar
  19. Pearce, C.E.M.: Extended continued fractions, recurrence relations and two-dimensional markov processes. Adv. Appl. Probab.21, 357–375 (1989)Google Scholar
  20. Shore, J.E., Johnson, R.W.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross entropy. IEEE Trans. Inf. Theory26, 26–37 (1980)Google Scholar
  21. Shore, J.E.: Information theoretic approximations forM/G/1 andG/G/1 queueing systems. Acta Inf.17, 43–61 (1982)Google Scholar
  22. Winkler, W.: On Dykstra's iterative fitting procedure. Ann. Probab.18, 1410–1415 (1990)Google Scholar
  23. Wolff, R.W.: Stochastic modeling and the theory of queues. Englewood Cliffs, NJ: Pretince-Hall 1989Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • G. I. Falin
    • 1
  • M. Martìn Dìaz
    • 2
  • J. R. Artalejo
    • 2
  1. 1.Department of Probability, Mechanics and Mathematics FacultyMoscow State UniversityMoscowRussia
  2. 2.Departamento de Estadistica e I.O., Facultad de MatematicasUniversidad Complutense de MadridMadridSpain

Personalised recommendations