Radiation and Environmental Biophysics

, Volume 32, Issue 1, pp 65–72 | Cite as

Influence of a stationary magnetic field on acetylcholinesterase in murine bone marrow cells

  • S. Stegemann
  • K. I. Altman
  • H. Mühlensiepen
  • L. E. Feinendegent


A thirty-minute exposure of mice to a homogeneous stationary magnetic field (SMF) of 1.4 Tesla at either 27° C or 37° C body temperature causes an inhibition of about 20 percent of acetylcholinesterase (AChE, E.C. 3.11.7) in murine bone marrow cells (BMC) after 3.5 and 2 h, respectively, at the two aforementioned body temperatures. The extent of enzyme inhibition is independent of ambient temperature, but dependent on the time after exposure. This initial inhibition of AChE activity is followed by a limited recovery which is dependent upon the temperature during exposure to the SMF and remains incomplete even 15 h afterwards. We describe here certain enzymologic properties of AChE in BMC as well as inhibition studies with diisoropylfluorophosphate (DFP) to differentiate between AChE and nonspecific cholinesterases.


Magnetic Field Bone Marrow Ambient Temperature Body Temperature Enzyme Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldridge NW (1950) Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues. Biochem J 66:451–460Google Scholar
  2. Alles GA, Hawes RC (1940) Cholinesterases in the blood of man. J Biol Chem 133:375–390Google Scholar
  3. Altman KI, Mühlensiepen H, Feinendegen LE (to be published)Google Scholar
  4. Braganza LF, Blott BH, Coe TJ, Melville D (1984) The superdiamagnetic effect of magnetic fields on one and two component multilamellar liposomes. Biochim Biophys Acta 801:66–75PubMedGoogle Scholar
  5. Burstein SA, Bryd CN, Dale GL (1985) Quantitation of megakaryocytopoiesis in liquid culture by enzymatic determination of acetylcholinesterase. J Cell Physiol 122:159–165PubMedGoogle Scholar
  6. Feinendegen LE, Mühlensiepen H (1985) Magnetic field affects thymidine kinase in vivo. Int J Radiat Biol 47:723–730Google Scholar
  7. Feinendegen LE, Mühlensiepen H (1987) In vivo control through a strong stationary magnetic field - the case of thymidine kinase in mouse bone marrow cells. Int J Radiat Biol 52:469–475Google Scholar
  8. Feinendegen LE, Mühlensiepen H, Lindberg C, Marx J, Porschen W, Booz J (1984) Acute and temporary inhibition of thymidine kinase in mouse bone marrow cells after low-dose exposure. Int J Radiat Biol 45:205–215Google Scholar
  9. Gorczynska E, Wegrzynowicz R (1986) Magnetic field provokes the increase of postacyclin in aorta of rats. Naturwissenschaften 73:675–677PubMedGoogle Scholar
  10. Gorczynska E, Wegrzynowicz R (1989) Effect of static magnetic field on some enzymes activities in rats. J Hyg Epidemiol Microbiol Immunol 33:149–155PubMedGoogle Scholar
  11. Gorczynska E, Galka G, Wegrzynowicz R, Mikoza H (1985) Effect of magnetic field on the process of cell respiration in mitochondria of rats. Physiol Chem Phys Med NMR 18:61–69Google Scholar
  12. Hohn-Elkarim K, Mühlensiepen H, Altman KI, Feinendegen LE (1990) Modification of effects of radiation on thymidine kinase. Int J Radiat Biol 58:97–110PubMedGoogle Scholar
  13. Johnson CD, Russell RL (1975) A rapid, simple radiometric assay for cholinesterase, suitable for multiple determinations. Anal Biochem 64:229–238PubMedGoogle Scholar
  14. Liburdy RP, Tenforde TS (1988) Magnetic deformation of phospholipid bilayers: effects on liposome shape and solute permeability at prephase transition temperatures. J Theor Biol 133:385–396Google Scholar
  15. Low M (1989) The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta 988:427–454PubMedGoogle Scholar
  16. Maret G, Dransfeld K (1975) Macromolecules and membranes in high magnetic fields. Physica 86-88B:1077–1083Google Scholar
  17. Peterson HP, Mühlensiepen H, von Wangenheim KH, Feinendegen LE (1986) Blood-forming stem cells, reactions to low-dose irradiation, vitamin E deficiency and magnetic field. Naturwissenschaften 73:623–625PubMedGoogle Scholar
  18. Peterson HP, von Wangenheim KH, Feinendegen LE (1992) Magnetic field exposure of marrow donor mice can increase the number of spleen colonies (CFU-S7d) in marrow recipient mice. Radiat Environ Biophys 31:31–33PubMedGoogle Scholar
  19. Plummer DT, Chai MSY, Vidal CJ (1984) In: Brzin M, Barnard EA, Sket D (eds) Cholinesterase fundamental and applied aspects. Walter de Gruyter and Co., Berlin New York, pp 173–186Google Scholar
  20. Potter LT (1967) A radiometric microassay of acetylcholinesterase. J Pharmacol Exp Ther 156:500–506PubMedGoogle Scholar
  21. Reno VR, Mutini LG (1963) Effect of magnetic fields on tissue respiration. Nature 198:204–205Google Scholar
  22. Rosenberry TL, Scoggin DM (1984) Structure of human erythrocyte acetylcholinesterase-Characterization of intersubunit disulfide bonding and detergent interaction. J Biol Chem 259:5643–5652PubMedGoogle Scholar
  23. Rotundo RL, Fambrough DM (1980) Synthesis, transport and fate of acetylcholinesterase in cultured chicken-embryo muscle cells. Cell 22:583–584PubMedGoogle Scholar
  24. Schneeweiß FHA, Xia F, Sharan RN, Feinendegen LE (1991) Einfluß eines statischen Magnet-feldes auf die Poly-ADP-Ribosylation von Plasma- und Nukleoproteinen menschlicher Nieren T1-Zellen. In: Jacobs H, Bonka H (eds) Strahlenschutz für Mensch and Umwelt. 25 Jahre Fachverband für Strahlenschutz. Verlag TÜV Rheinland, Köln, pp 434–438Google Scholar
  25. Shafai T, Cortner JA (1971) Human erythrocyte acetylcholinesterase. I. Resolution of activity into two components. Biochem Biophys Acta 236:612–618PubMedGoogle Scholar
  26. Stegemann S, Mühlensiepen H, Altman KI, Feinendegen LE to be publishedGoogle Scholar
  27. Taylor P (1991) The cholinesterases. J Biol Chem 266:4025–4028PubMedGoogle Scholar
  28. Trepels-Beek H, Wirtz S, Mühlensiepen H, Feinendegen LE (1991) Wirkung homogener, statischer Magnetfelder auf L929-Zellen. In: Jacobs H, Bonka H (eds) Strahlenschutz für Mensch und Umwelt. 25 Jahre Fachverband für Strahlenschutz. Verlag TÜV Rheinland, Köln, pp 445–449Google Scholar
  29. Whittaker M (1986) In: (ed) Cholinesterase, vol 11, Beckman L, p 2Google Scholar
  30. Young W (1969) Magnetic field andin situ acetylcholinesterase in the vagal heart system. In: Biological effects of magnetic field, vol 2. Plenum Press, New York, pp 79–102Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • S. Stegemann
    • 1
  • K. I. Altman
    • 2
  • H. Mühlensiepen
    • 1
  • L. E. Feinendegent
    • 1
  1. 1.Forschungszentrum JülichInstitut für MedizinJülichGermany
  2. 2.School of Medicine and DentistryUniversity of RochesterRochesterUSA

Personalised recommendations