Communications in Mathematical Physics

, Volume 80, Issue 2, pp 153–179

A general Lee-Yang theorem for one-component and multicomponent ferromagnets

  • Elliott H. Lieb
  • Alan D. Sokal
Article

Abstract

We show that any measure on ℝn possessing the Lee-Yang property retains that property when multiplied by a ferromagnetic pair interaction. Newman's Lee-Yang theorem for one-component ferromagnets with general single-spin measure is an immediate consequence. We also prove an analogous result for two-component ferromagnets. ForN-component ferromagnets (N ≧ 3), we prove a Lee-Yang theorem when the interaction is sufficiently anisotropic.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ruelle, D.: Statistical mechanics—rigourous results. Chap. 5. New York: Benjamin 1969Google Scholar
  2. 2.
    Fröhlich, J.: Poetic phenomena in (two dimensional) quantum field theory: non-uniqueness of the vacuum, the solitons and all that. In: Les méthodes mathématiques de la théorie quantique des champs (1975 Marseille conference). Paris: CNRS 1976Google Scholar
  3. 3.
    Penrose, O., Lebowitz, J. L.: Commun. Math. Phys.39 165–184 (1974)Google Scholar
  4. 4.
    Guerra, F., Rosen, L., Simon, B.: Commun. Math. Phys.41, 19–32 (1975)Google Scholar
  5. 5.
    Newman, C. M.: Commun. Math. Phys.41, 1–9 (1975)Google Scholar
  6. 6.
    Dunlop, F.: J. Stat. Phys.21, 561–572 (1979)Google Scholar
  7. 7.
    Baker, G. A. Jr.: Phys. Rev. Lett.20, 990–992 (1968)Google Scholar
  8. 8.
    Sokal, A. D.: J. Stat. Phys.25, 25–50 (1981)Google Scholar
  9. 9.
    Lee, T. D., Yang, C. N.: Phys. Rev.87, 410–419 (1952)Google Scholar
  10. 10.
    Asano, T.: J. Phys. Soc. Jpn29, 350–359 (1970)Google Scholar
  11. 11.
    Suzuki, M., Fisher, M. E.: J. Math. Phys. (N. Y.)12, 235–246 (1971)Google Scholar
  12. 12.
    Ruelle, D.: Phys. Rev. Lett.26, 303–304, 870 (E) (1971)Google Scholar
  13. 13.
    Ruelle, D.: Commun. Math. Phys.31, 265–277 (1973)Google Scholar
  14. 14.
    Simon, B.: The P (ϕ)2 Euclidean (quantum) field theory. Sect. IX.3. Princeton: Princeton University Press 1974Google Scholar
  15. 15.
    Newman, C. M.: Commun. Pure Appl. Math.27, 143–159 (1974)Google Scholar
  16. 16.
    Dunlop, F.: J. Stat. Phys.17, 215–228 (1977)Google Scholar
  17. 17.
    Sylvester, G. S.: A note on the Lee-Yang Theorem. Oklahoma State University preprint (1980)Google Scholar
  18. 18.
    Griffiths, R. B.: J. Math. Phys.10, 1559–1565 (1969)Google Scholar
  19. 19.
    Simon, B., Griffiths, R. B.: Commun. Math. Phys.33, 145–164 (1973)Google Scholar
  20. 20.
    Dunlop, F.: Commun. Math. Phys.69, 81–88 (1979)Google Scholar
  21. 21.
    Dunlop, F., Newman, C. M.: Commun. Math. Phys.44, 223–235 (1975)Google Scholar
  22. 22.
    Takagi, T.: Proc. Physico-Math. Soc. Japan3, 175–179 (1921). The collected papers of T. Takagi Kuroda, S. (ed.) Tokyo: Iwanami Shoten Publishers 1973Google Scholar
  23. 23.
    Marden, M.: Geometry of polynomials (2nd edit). Providence: American Mathematical Society 1966Google Scholar
  24. 24.
    Dieudonné, J.: C. R. Acad. Sci. Paris199, 999–1001 (1934)Google Scholar
  25. 25.
    Grace, J. H.: Proc. Cambridge Philos. Soc.11, 352–357 (1902)Google Scholar
  26. 26.
    Obreschkoff, N.: Verteilung und Berechung der Nullstellen reeller Polynome. Berlin: VEB Deutscher Verlag der Wissenschaften 1963Google Scholar
  27. 27.
    Millard, K. Y., Viswanathan, K. S.: J. Math. Phys.15, 1821–1825 (1974)Google Scholar
  28. 28.
    Taylor, B. A.: Some locally convex spaces of entire functions. In: Entire functions and related parts of analysis. Korevaar, J. (ed.). Proceedings of symposia in pure mathematics, Vol. XI. Providence: American Mathematical Society 1968Google Scholar
  29. 29.
    Sikkema, P. C.: Differential operators and differential equations of infinite order with constant coefficients. Groningen-Djakarta: Noordhoff 1953Google Scholar
  30. 30.
    Hille, E.: Analytic function theory, Vol. II. Boston: Ginn 1962Google Scholar
  31. 31.
    Pólya, G.: Sur les opérations fonctionelles linéaires, échangeables avec la dérivation et sur les zéros des polynômes. C. R. Acad. Sci. (Paris)183, 413–414 (1926). Collected papers, Vol. II Boas, R. P. (ed.). pp. 261–262, 427. Cambridge: MIT Press 1974Google Scholar
  32. 32.
    Benz, E.: Comments. Math. Helv.7, 243–289 (1935)Google Scholar
  33. 33.
    Levin, B. Ja: Distribution of zeros of entire functions. Providence: American Mathematical Society 1964 (Translated from Russian)Google Scholar
  34. 34.
    Obrechkoff, N.: Quelques classes de fonctions entières limites de polynômes et de fonctions méromorphes limites de fractions rationelles. In: Actualités Sci. et Ind. Vol. 891 pp. 24–25. Paris: Hermann 1941Google Scholar
  35. 35.
    Korevaar, J.: Limits of polynomials whose zeros lie in a given set. In: Entire functions and related parts of analysis (Korevaar, J. (ed.). Proceedings of symposia in pure mathematics, Vol. XI. Providence: American Mathematical Society 1968Google Scholar
  36. 36.
    Schwartz, L.: Théorie des distributions (nouv. éd.). Paris: Hermann 1966Google Scholar
  37. 37.
    Pirogov, S. A., Sinai, Ya. G.: Teor. Mat. Fiz.25, 358–369 (1975);26, 61–76 (1976) Theor. Math. Phys. (USSR)25, 1185–1192 (1975);26, 39–49 (1976)Google Scholar
  38. 38.
    Gawedzki, K.: Commun. Math. Phys.59, 117–142 (1978)Google Scholar
  39. 39.
    Newman, C. M.: Proc. Am. Math. Soc.61, 245–251 (1976)Google Scholar
  40. 40.
    Newman, C. M.: J. Stat. Phys.15, 399–406 (1976)Google Scholar
  41. 41.
    Heilmann, O. J., Lieb, E. H.: Commun. Math. Phys.25, 190–232 (1972); Erratum27, 166 (1972)Google Scholar
  42. 42.
    Dunlop, F.: Zeros of the partition function for some generalized ising models. Esztergom Colloquium. IHES Preprint 1979Google Scholar
  43. 43.
    Runnels, L. K., Lebowitz, J. L.: J. Stat. Phys.23, 1–10 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Elliott H. Lieb
    • 1
  • Alan D. Sokal
    • 2
  1. 1.Departments of Mathematics and PhysicsPrinceton UniversityPrincetonUSA
  2. 2.Department of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations