Advertisement

Combinatorica

, Volume 14, Issue 3, pp 263–268 | Cite as

A statistical theorem of set addition

  • Antal Balog
  • Endre Szemerédi
Article

AMS subject classification code (1991)

11 B 05 05 B 10 11 B 75 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Z. Ruzsa: Arithmetical progressions and the number of sums, to appear inPeriodica Math. Hung. Google Scholar
  2. [2]
    I. Z. Ruzsa: Generalized arithmetical progressions and sum sets, in preparation.Google Scholar
  3. [3]
    E. Szemerédi: On sets of integers containing nok elements in arithmetic progression,Acta Arithmetica 27 (1975), 299–345.Google Scholar
  4. [4]
    E. Szemerédi: Regular partitions of graphs,Problèmes Combinatories at Theorie des Graphes, (Ed. J-C. Bermond, et al.), CNRS aris, (1978), 399–401.Google Scholar
  5. [5]
    E. Szemerédi: no title, in preparation.Google Scholar

Copyright information

© Akadémiai Kiadó 1994

Authors and Affiliations

  • Antal Balog
    • 1
  • Endre Szemerédi
    • 2
    • 3
  1. 1.Mathematical Institute of theHungarian Academy of SciencesBudapestHungary
  2. 2.Rutgers UniversityNew Brunswick
  3. 3.Department of Computer Science Mathematical Institute of theHungarian Academy of SciencesBudapestHungary

Personalised recommendations