computational complexity

, Volume 1, Issue 4, pp 360–394 | Cite as

Efficient and optimal exponentiation in finite fields

  • Joachim von zur Gathen


Optimal sequential and parallel algorithms for exponentiation in a finite field containing F q are presented, assuming thatqth powers can be computed for free.

Subject classifications

68Q40 11Y16 12Y05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. G. B. Agnew, R. C. Mullin, andS. A. Vanstone, Fast exponentiation inGF(2n). InAdvances in Cryptology—EUROCRYPT'88, ed.C. G. Günther, vol. 330 ofLecture Notes in Computer Science. Springer (Berlin), 1988, 251–255.Google Scholar
  2. J. Berstel andS. Brlek, On the length of word chains.Inform. Process. Lett. 26 (1987), 23–28.Google Scholar
  3. T. Beth, B. M. Cook, andD. Gollmann, Architectures for exponentiation inGF(2n). InAdvances in Cryptology—CRYPTO'86, ed.A. M. Odlyzko, vol. 263 ofLecture Notes in Computer Science. Springer (Berlin), 1986, 302–310.Google Scholar
  4. F. Fich andM. Tompa, The parallel complexity of exponentiating polynomials over finite fields.J. Assoc. Comput. Mach. 35 (1988), 651–667.Google Scholar
  5. J. von zur Gathen, Computing powers in parallel.SIAM J. Comput. 16 (1987), 930–945.Google Scholar
  6. J. von zur Gathen, Inversion in finite fields using logarithmic depth.J. Symb. Comp. 9 (1990), 175–183.Google Scholar
  7. J. von zur Gathen, Processor-efficient exponentiation in finite fields. Inform. Process. Lett., to appear, 1992.Google Scholar
  8. J. von zur Gathen andM. Giesbrecht, Constructing normal bases in finite fields.J. Symb. Comp. 10 (1990), 547–570.Google Scholar
  9. J. von zur Gathen andG. Seroussi, Boolean circuits versus arithmetic circuits.Inform. and Comput. 91 (1991), 142–154.Google Scholar
  10. P. N. Golovanov andV. I. Solodovnikov, Rapid parallel calculation of degrees in a quotient ring of polynomials over a finite field.Mathematical Notes 42 (1987), 987–992.Google Scholar
  11. D. E. Knuth,The Art of Computer Programming, Vol. 2, Seminumerical Algorithms. Addison-Wesley (Reading MA), 2 edition, 1981.Google Scholar
  12. Th. Lengauer and K. Mehlhorn, VLSI complexity, efficient VLSI algorithms and the HILL design system. InAlgorithmics for VLSI, ed.C. Trullemans. Academic Press, 1986, 33–89.Google Scholar
  13. G. W. Reitwiesner, Binary arithmetic.Advances in computers, ed. F. L. Alt 1 (1960), 231–308.Google Scholar
  14. D. R. Stinson, Some observations on parallel algorithms for fast exponentiation inGF(2n).SIAM J. Comput. 19 (1990), 711–717.Google Scholar
  15. C. C. Wang, T. K. Truong, H. M. Shao, L. J. Deutsch, J. K. Omura, andI. S. Reed, VLSI architectures for computing multiplications and inverses inGF(2m).IEEE Trans. Comput. C-34 (1985), 709–717.Google Scholar

Copyright information

© Birkhäuser Verlag 1991

Authors and Affiliations

  • Joachim von zur Gathen
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada

Personalised recommendations