Communications in Mathematical Physics

, Volume 75, Issue 3, pp 229–238 | Cite as

On the distributions corresponding to bounded operators in the Weyl quantization

  • Ingrid Daubechies


Using properties of an integral transform giving directly the matrix elements of a quantum mechanical operator from the corresponding classical function, we restrict the class of distributions corresponding to bounded operators. As a consequence, we can exhibit a class of functions yielding trace-class operators, and give a bound on their trace-norm.


Neural Network Statistical Physic Matrix Element Complex System Nonlinear Dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grossmann, A.: Commun. Math. Phys.48, 191–194 (1976)Google Scholar
  2. 2.
    Segal, I.E.: Math. Scand.13, 31 (1963)Google Scholar
  3. 3.
    Pool, J.C.: J. Math. Phys.7, 66–76 (1966)Google Scholar
  4. 4.
    Loupias, G.: Phys. Thesis, Univ. d'Aix, Marseille, 1966Google Scholar
  5. 5.
    Loupias, G., Miracle-Sole, S.: Ann. Inst. H. Poincaré6, 39–58 (1967)Google Scholar
  6. 6.
    Voros, A.: J. Funct. Anal.29, 104–132 (1978)Google Scholar
  7. 7.
    Berezin, F.A., Šubin, M.A.: Coll. Math. Soc. J. Bolyai5, 21–52, Tihany (Hungary), 1970Google Scholar
  8. 8.
    Grossmann, A.: Momentum-like constants of motion. In: Statistical mechanics and field theory (eds. R. N. Sen and C. Weil). Halstead 1972Google Scholar
  9. 9.
    Daubechies, I., Grossmann, A.: An integral transform related to quantization. To be published in J. Math. Phys.Google Scholar
  10. 10.
    Bargmann, V.: Comm. Pure Appl. Math.14, 187–214 (1961)Google Scholar
  11. 11.
    Bargmann, V.: Comm. Pure Appl. Math.20, 1–101 (1967)Google Scholar
  12. 12.
    Daubechies, I., Grossmann, A.: In preparationGoogle Scholar
  13. 13.
    Grossmann, A., Loupias, G., Stein, E.M.: Ann. Inst. Fourier23, 343–368 (1969)Google Scholar
  14. 14.
    Klauder, J.R.: Ann. Phys.11, 123–168 (1960)Google Scholar
  15. 15.
    Klauder, J.R., Sudarshan, E.C.: Fundamentals of quantum optics. New York: Benjamin 1968Google Scholar
  16. 16.
    Daubechies, I.: Ph. D. Thesis, VUB Brussels 1980Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Ingrid Daubechies
    • 1
  1. 1.Theoretische NatuurkundeVrije Universiteit BrusselBrusselBelgium

Personalised recommendations