Advertisement

Acta Mechanica

, Volume 113, Issue 1–4, pp 9–19 | Cite as

Flow induced by an asymmetrically placed disk rotating coaxially inside a cylindrical casing

  • A. Khalili
  • R. R. Adabala
  • H. J. Rath
Original Papers

Summary

In this paper, the flow due to a rotating disk non-symmetrically placed with respect to the height of the enclosing stationary cylinder is analyzed numerically. The full Navier-Stokes equations expressed in terms of stream function and vorticity are solved by successive over-relaxation for different disk radii, its distance from the bottom casing and rotational Reynolds numbers. It is observed that the flow pattern is strongly influenced by the size and the position of the disk. When the disk is very close to the top casing and small in radius, there are two regions of different scales and the vortices in the region of small scale are trapped between the disk and the top casing. Further, the variation of the moment coefficient is determined for different positions and sizes of the rotating disk. The calculations shows that the frictional torque increases rapidly, when the disk approaches the top casing. This finding is of importance for the design of vertical rotating disk reactors applied in chemical vapor deposition.

Keywords

Vortex Torque Reynolds Number Vorticity Casing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jeffrey, G. B.: On the steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. Ser. 214, 327–338 (1915).Google Scholar
  2. [2]
    von Kármán, T.: Über laminare und turbulente Reibung. ZAMM1, 233–252 (1921).Google Scholar
  3. [3]
    Pao, H. P.: A numerical computation of a confined rotating flow. J. Appl. Mech.37, 480–487 (1970).Google Scholar
  4. [4]
    Pao, H. P.: Numerical solution of the Navier-Stokes equations for flow in the disk-cylinder system. Phys. Fluids15, 4–11 (1972).Google Scholar
  5. [5]
    Lugt, H. S., Haussling, H. J.: Development of flow circulation in a rotating tank. Acta Mech.49, 255–272 (1973).Google Scholar
  6. [6]
    Zandbergen, P. J., Dijkstra, D.: Von Kármáns swirling flows. Annu. Rev. Fluid Mech.19, 465–491 (1987).Google Scholar
  7. [7]
    Brady, J. F., Durlofsky, L.: On rotating disk flow. J. Fluid Mech.175, 363–394 (1987).Google Scholar
  8. [8]
    Lugt, H. S., Haussling, H. J.: Axisymmetric vortex breakdown in a rotating fluid within a container. J. Appl. Mech.49, 921–923 (1982).Google Scholar
  9. [9]
    Chang, C. J., Schuler, C. A., Humphrey, J. A. C., Greif, R.: Flow and heat transfer in the space between two corotating disks in an axisymmetric enclosure. J. Heat Transfer111 625–632 (1989).Google Scholar
  10. [10]
    Garg, V. K., Szeri, A. Z.: Fluid flow and heat transfer between rotating disks. Int. J. Heat Fluid Flow14, 155–163 (1993).Google Scholar
  11. [11]
    Khalili, A., Rath, H. J.: Analytical solution for a steady flow of enclosed rotating disk. ZAMP45, 670–680 (1994).Google Scholar
  12. [12]
    Schmieden, C.: Über den Widerstand einer in einer Flüssigkeit rotierenden Scheibe. ZAMM8, 460–479 (1928).Google Scholar
  13. [13]
    Hyun, J. M.: Flow near a slowly rotating disk in a finite cylinder. J. Phys. Soc. Jap.53, 3808–3813 (1984).Google Scholar
  14. [14]
    Wang, C. Y.: Slow rotation of a disk in a fluid-filled casing. Acta Mech.94, 97–103 (1992).Google Scholar
  15. [15]
    Khalili, A., Adabala, R. R., Rath, H. J.: Nonlinear effects on rotating disk flow in a cylindrical casing. Acta Mech.107, 1–11 (1994).Google Scholar
  16. [16]
    Davis, R. W., Moore, E. F., Zachariah, M. R.: Numerical modeling of particle dynamics in a rotating disk chemical vapor deposition reactor. J. Crystal Growth132, 513–522 (1993).Google Scholar
  17. [17]
    Peyret, R., Taylor, T. O.: Computational methods for fluid flow, pp. 182–215. Berlin Heidelberg New York: Springer 1983.Google Scholar
  18. [18]
    Dijkstra, D., Van Heijst, G. J. F.: The flow between two finite rotating disks enclosed by a cylinder. J. Fluid Mech.128, 123–154 (1983).Google Scholar
  19. [19]
    Lopez, J. M.: Axisymmetric vortex breakdown: Part 1, confined swirling flow. J. Fluid Mech.221, 533–552 (1990).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • A. Khalili
    • 1
  • R. R. Adabala
    • 2
  • H. J. Rath
    • 1
  1. 1.Center of Applied Space Technology and Microgravity (ZARM)University of BremenBremenGermany
  2. 2.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations