Advertisement

Communications in Mathematical Physics

, Volume 100, Issue 2, pp 197–229 | Cite as

Global gravitational anomalies

  • Edward Witten
Article

Abstract

A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π7(O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field.

Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity.

Keywords

Neural Network Statistical Physic Complex System Field Strength Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, S.: Axial-vector vertex in spinor electrodynamics. Phys. Rev.177, 2426 (1969)Google Scholar
  2. 1a.
    Bell, J., Jackiw, R.: A PCAC puzzle: π0γγ in theσ-model. Nuovo Cimento60 A, 47 (1969)Google Scholar
  3. 2.
    Gross, D.J., Jackiw, R.: Effect of anomalies on quasi-renormalizable-theories. Phys. Rev. D6, 477 (1972);Google Scholar
  4. 2a.
    Bouchiat, C., Iliopoulos, J., Meyer, Ph.: An anomaly-free version of Weinberg's model. Phys. Lett.38 B, 519 (1972);Google Scholar
  5. 2b.
    Georgi, H., Glashow, S.: Gauge theories without anomalies. Phys. Rev. D6, 429 (1972)Google Scholar
  6. 3.
    Frampton, P.H., Kephart, T.W.: Explicit evaluation of anomalies in higherdimensions and Consistency conditions for Kaluza-Klein anomalies. Phys. Rev. Lett.50, 1343, 1347 (1983); Townsend, P.K., Sierra, G.: (LPTENS preprint, 1983)Google Scholar
  7. 3a.
    Zumino, B., Yong-shi, W., Zee, A.: Nucl. Phys. B239, 477 (1984); Matsuki, Y., Hill, A.: (OSU preprint, 1983)Google Scholar
  8. 4.
    Alvarez-Gaumé, L., Witten, E.: Gravitational anomalies. Nucl. Phys. B234, 269 (1983)Google Scholar
  9. 5.
    Green, M.G., Schwarz, J.H.: Anomaly cancellations in supersymmetricD=10 gauge theory and superstring theory. Phys. Lett.149 B, 117 (1984)Google Scholar
  10. 6.
    Schwarz, J.H.: Superstring theory. Phys. Rep.89, 223 (1982);Google Scholar
  11. 6a.
    Green, M.B.: Supersymmetrical dual string theories and their field theory limits — a review. Surv. High Energ. Phys.3, 127 (1983)Google Scholar
  12. 7.
    Gross, D.J., Harvey, J., Martinec, E., Rohm, R.: Princeton preprint (1984). The suggestion that rank 16 is the difference between 26 dimensions of the Veneziano model and ten of the superstring was made by P.G.O. Freund (private communication and Santa Barbara preprint (1984) See also J. Thierry-Mieg, Berkeley preprint (1984)Google Scholar
  13. 8.
    Deser, S., Jackiw, R., Templeton, S.: Three-dimensional massive gauge theories. Phys. Rev. Lett.48, 975 (1982)Google Scholar
  14. 9.
    Witten, E.: An SU(2)anomaly. Phys. Lett.117 B, 324 (1982)Google Scholar
  15. 10.
    Elitzur, S., Nair, V.P.: IAS preprint (1984)Google Scholar
  16. 11.
    Witten, E.: Global aspects of current algebra. Nucl. Phys. B223, 422 (1983)Google Scholar
  17. 12.
    Harvey, J.: UnpublishedGoogle Scholar
  18. 13.
    Smale, S.: Ann. Math., II. Ser.74, 392 (1961); Proc. Am. Math. Soc.10, 621 (1950)Google Scholar
  19. 14.
    Milnor, J.: Ann. Math., II. Ser.64 3991 (1956)Google Scholar
  20. 15.
    Cerf, J.: La stratification naturelle, ... et la theoreme de la pseudo-isotope, I.H.E.S. Publ. Math.39, 5–173Google Scholar
  21. 16.
    Milnor, J.: In Differential and combinatorial topology, Princeton, NJ: Princeton University Press 1965Google Scholar
  22. 17.
    Eells, J., Kuiper, N.: Ann. Math. Pure Appl.60, 63 (1963)Google Scholar
  23. 18.
    Milnor, J.: In Lectures on modern mathematics, pp. 165–183, Saaty, T.L., ed. New York: Wiley 1963Google Scholar
  24. 19.
    Kervaire, M.A., Milnor, J.W.: Ann. Math.77, 504 (1963)Google Scholar
  25. 20.
    Wetterich, C.: Massless spinors in more than four dimensions. Nucl. Phys. B211, 177 (1982)Google Scholar
  26. 21.
    Atiyah, M.F., Singer, I.M.: Ann. Math.93, 1, 119, 139 (1971)Google Scholar
  27. 22.
    Ochanine, S.: Math. Notes13, 57 (1973), Math. Reviews83j:57014Google Scholar
  28. 23.
    Goldstone, J.: UnpublishedGoogle Scholar
  29. 24.
    Belavin, A.A., Polyakov, A.M., Schwarz, A.S., Tyupkin, Yu.S.: Pseudoparticle solutions of the Yang-Mills equations. Phys. Lett.59 B, 85 (1975);Google Scholar
  30. 24a.
    Callan, C.G., Jr., Dashen, R.F., Gross, D.J.: The structure of the gauge theory vacuum. Phys. Lett.63 B, 334 (1976);Google Scholar
  31. 24b.
    Jackiw, R., Rebbi, C.: Vacuum periodicity in a Yang-Mills quantum theory. Phys. Rev. Lett.37, 172 (1976);Google Scholar
  32. 24c.
    't Hooft, G.: Symmetry breaking through Bell-Jackiw anomalies. Phys. Rev. Lett.37, 8 (1976)Google Scholar
  33. 25.
    Freedman, M.H.: J. Differ. Geom.17, 357 (1982)Google Scholar
  34. 26.
    Milnor, J.: Am. J. Math.84, 1 (1962)Google Scholar
  35. 27.
    Hitchen, N.: J. Differ. Geom.9, 435 (1974)Google Scholar
  36. 28.
    Alvarez-Gaumé, L., Della Pietra, S., Moore, G.: Odd dimensional effective actions. Harvard preprint (1984), to appear in Annals of Physics (N.Y.)Google Scholar
  37. 29.
    Atiyah, M.F., Patodi, V.K., Singer, I.M.: Proc. Camb. Philos. Soc.77, 43 (1975),78, 405 (1975)79, 71 (1976)Google Scholar
  38. 30.
    Alvarez, O., Singer, I.M., Zumino, B.: Gravitational anomalies and the family's index theorem, Commun. Math. Phys.96, 409 (1984)Google Scholar
  39. 31.
    Witten, E.: Some properties of O(32) superstrings, Phys. Lett.149 B, 351 (1984)Google Scholar
  40. 32.
    Alvarez-Gaumé, L., Ginsparg, P.: The structure of gauge and gravitational anomalies. Harvard preprint (1984)Google Scholar
  41. 33.
    Ogievetsky, V.I., Polubarinov, I.V.: Sov. J. Nucl. Phys.4 156 (1967);Google Scholar
  42. 33a.
    Kalb, M., Ramond, P.: Classical direct interstring action. Phys. Rev. D9, 2273 (1974)Google Scholar
  43. 34.
    Chapline, G.F., Manton, N.S.: Unification of Yang-Mills theory and supergravity in ten dimensions. Phys. Lett.120 B, 105 (1983)Google Scholar
  44. 35.
    See, for instance, R. Nepomechie, University of Washington preprint (1984)Google Scholar
  45. 36.
    R. Rohm and E. Withen (to appear)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Edward Witten
    • 1
  1. 1.Joseph Henry LaboratoriesPrinceton UniversityPrincetonUSA

Personalised recommendations