Advertisement

Communications in Mathematical Physics

, Volume 100, Issue 2, pp 173–190 | Cite as

Instability of nonlinear bound states

  • Jalal Shatah
  • Walter Strauss
Article

Abstract

We establish a sharp instability theorem for the bound states of lowest energy of the nonlinear Klein-Gordon equation,utt−◃u+f(u)=0, and the nonlinear Schrödinger equation, −iut−◃u+f(u)=0.

Keywords

Neural Network Statistical Physic Lower Energy Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, D.: Stability of time-dependent particlelike solutions in nonlinear field theories II. J. Math. Phys.12, 945–952 (1971)Google Scholar
  2. 2.
    Berestycki, H., Cazenave, T.: Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires. C.R. Acad. Sci.293, 489–492 (1981)Google Scholar
  3. 3.
    Berestycki, H., Lions, P. L.: Nonlinear scalar field equations. Arch. Rat. Mech. Anal.82, 313–375 (1983)Google Scholar
  4. 4.
    Cazenave, T., Lions, P. L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys.85, 549–561 (1982)Google Scholar
  5. 5.
    Glassey, R.: On the blowing-up of solutions to the Cauchy problem for nonlinear Schrödinger equations. J. Math. Phys.18, 1794–7 (1977)Google Scholar
  6. 6.
    Keller, C.: Stable and unstable manifolds for the nonlinear wave equation with dissipation. J. Diff. Eqs.50, 330–347 (1983)Google Scholar
  7. 7.
    Lee, T. D.: Particles physics and introduction to field theory. New York: Harwood Academic 1981Google Scholar
  8. 8.
    Makhankov, V. G.: Dynamics of classical solutions (in non-integrable systems). Phys. Rep.35, 1–128 (1978)Google Scholar
  9. 9.
    Payne, L., Sattinger, D.: Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math.22, 273–303 (1975)Google Scholar
  10. 10.
    Shatah, J.: Stable standing waves of nonlinear Klein-Gordon equations. Commun. Math. Phys.91, 313–327 (1983)Google Scholar
  11. 11.
    Shatah, J.: Unstable ground states of nonlinear Klein-Gordon equations. Trans. A.M.S. (1985)Google Scholar
  12. 12.
    Strauss, W.: On weak solutions of semi-linear hyperbolic equations. Anais Acad. Brasil. Cienc.42, 645–651 (1970)Google Scholar
  13. 13.
    Strauss, W.: Existence of solitary waves in higher dimensions. Commun. Math. Phys.55, 149–162 (1977)Google Scholar
  14. 14.
    Strauss, W.: Stable and unstable states of nonlinear wave equations. Contemp. Math.17, 429–441 (1983)Google Scholar
  15. 15.
    Weinstein, M.: Stability analysis of ground states of nonlinear Schrödinger equations. preprintGoogle Scholar
  16. 16.
    Berestycki, H., Gallouet, T., Kavian, O.: Equations des champs scalaires euclidiens non linéaires dans le plan. C.R. Dokl. Acad. Sci.297, 307–310 (1983)Google Scholar
  17. 17.
    Brezis, H., Lieb, E.: Minimum action solutions of some vector field equations. Commun. Math. Phys.96, 97–113 (1984)Google Scholar
  18. 18.
    Pecher, H.: Low-energy scattering for nonlinear Klein-Gordon equations. preprintGoogle Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Jalal Shatah
    • 1
  • Walter Strauss
    • 2
  1. 1.Courant InstituteNew YorkUSA
  2. 2.Department of MathematicsBrown UniversityProvidenceUSA

Personalised recommendations