Advertisement

Communications in Mathematical Physics

, Volume 105, Issue 1, pp 35–47 | Cite as

Existence of localized solutions for a classical nonlinear Dirac field

  • Thierry Cazenave
  • Luis Vazquez
Article

Abstract

We prove the existence of stationary states for nonlinear Dirac equations of the form:
$$i\gamma ^\mu \partial _\mu \psi - m\psi + F(\bar \psi \psi )\psi = 0.$$
We seek solutions which are separable in spherical coordinates and we use a shooting method for solving the associated problem of ordinary differential equations.

Keywords

Differential Equation Neural Network Statistical Physic Complex System Stationary State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, A., Soler, M.: Energetic stability criterion for a nonlinear spinorial model. Phys. Rev. Lett.50, 1230–1233 (1983)Google Scholar
  2. 2.
    Berestycki, H., Lions, P. L., Peletier, L. A.: Indiana Univ. Math. J.30, 141–157 (1981)Google Scholar
  3. 3.
    Bogolubski, I. L.: On spinor soliton stability. Phys. Lett. A73, 87–90 (1979)Google Scholar
  4. 4.
    Finkelstein, R., Fronsdal, C. F., Kaus, P.: Nonlinear spinor fields. Phys. Rev.103, 1571–1579 (1956)Google Scholar
  5. 5.
    Garcia, L., Rañada, A. F.: A classical model of the nucleon. Prog. Theor. Phys. (Kyoto)64, 671–693 (1980)Google Scholar
  6. 6.
    Heisenberg, W.: Doubts and hopes in quantumelectrodynamics. Physica19, 897–908 (1953)Google Scholar
  7. 7.
    Ivanenko, D.: Sov. Phys.13, 141–149 (1938)Google Scholar
  8. 8.
    Mathieu, P., Morris, T. F.: Instability of stationary states for nonlinear spinor models with quartic self-interaction. Phys. Lett.126B, 74 (1983)Google Scholar
  9. 9.
    Rafelski, J.: Soliton solutions of a selfinteracting Dirac field in three space dimensions. Phys. Lett.B66, 262–266 (1977)Google Scholar
  10. 10.
    Rañada, A. F.: Classical nonlinear Dirac field models of extended particles. In: Quantum theory, groups, fields and particles. Barut, A. O. (ed.) Amsterdam: Reidel 1983Google Scholar
  11. 11.
    Rañada, A. F., Rañada, M. F.: Nonlinear model ofc-number confined Dirac quarks. Phys. Rev.D29, 985–993 (1984)Google Scholar
  12. 12.
    Rañada, A. F., Ranada, M. F., Soler, M., Vazquez, L.: Classical electrodynamics of a nonlinear Dirac field with anomalous magnetic moment. Phys. Rev.D10, 517–525 (1976)Google Scholar
  13. 13.
    Rañada, A. F., Soler, M.: Perturbation theory for an exactly soluble spinor model in: interaction with its electromagnetic field. Phys. Rev.D8, 3430–3433 (1973)Google Scholar
  14. 14.
    Rañada, A. F., Uson, J., Vazquez, L.: Born-Infeld effects in the electromagnetic mass of an extended Dirac particle. Phys. Rev.D22, 2422–2424 (1980)Google Scholar
  15. 15.
    Rañada, A. F., Vazquez, L., Prog. Theor. Phys. (Kyoto)56, 311–323 (1976)Google Scholar
  16. 16.
    Soler, M., Classical, stable, nonlinear spinor field with positive rest energy. Phys. Rev.D1, 2766–2769 (1970)Google Scholar
  17. 17.
    Soler, M.: Classical electrodynamics for a nonlinear spinorfield: Perturbative and exact approaches. Phys. Rev. 3424–3429 (1973)Google Scholar
  18. 18.
    Takahashi, K.: Soliton solutions of nonlinear Dirac equations. J. Math. Phys.20, 1232–1238 (1979)Google Scholar
  19. 19.
    Vazquez, L.: Localized solutions of a non-linear spinor field. J. Phys.A10, 1361–1368 (1977)Google Scholar
  20. 20.
    Wakano, M.: Intensely localized solutions of the classical Dirac-Maxwell field equations. Prog. Theor. Phys. (Kyoto)35, 1117–1141 (1966)Google Scholar
  21. 21.
    Werle, J.: Stability of particle-like solutions of non-linear Klein-Gordon and Dirac equations. Acta Physica PolonicaB12, 601–616 (1981)Google Scholar
  22. 22.
    Weyl, H.: A remark on the coupling of gravitation and electron. Phys. Rev.77, 699–701 (1950)Google Scholar
  23. 23.
    Van der Merwe, T.: Nuovo Cimento.60A, 247 (1980)Google Scholar
  24. 24.
    Strauss, W. A., Vazquez, L.: On the stability under dilations of nonlinear spinor fields (submitted to Phys. Rev. D)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Thierry Cazenave
    • 1
  • Luis Vazquez
    • 2
  1. 1.Analyse NumériqueUniversité Pierre et Marie CurieParis Cedex 05France
  2. 2.Departamento de Fisica Teorica, Facultad de Ciencias FisicasUniversidad ComplutenseMadridSpain

Personalised recommendations