Communications in Mathematical Physics

, Volume 99, Issue 2, pp 177–195 | Cite as

On the concept of attractor

  • John Milnor
Article

Abstract

This note proposes a definition for the concept of “attractor,” based on the probable asymptotic behavior of orbits. The definition is sufficiently broad so that every smooth compact dynamical system has at least one attractor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anosov, D.V., Katok, A.B.: New examples in smooth ergodic theory. Trans. Moscow Math. Soc.23, 1–35 (1970)Google Scholar
  2. Auslander, J., Bhatia, N.P., Seibert, P.: Attractors in dynamical systems. Bol. Soc. Mat. Mex.9, 55–66 (1964)Google Scholar
  3. Besicovitch, A.S.: A problem on topological transformation of the plane. Fundam. Math.27, 61–65 (1937)Google Scholar
  4. Bowen, R.: A horseshoe with positive measure. Invent. Math.28, 203–204 (1975)Google Scholar
  5. Bowen, R.: Invariant measures for Markov maps of the interval. Commun. Math. Phys.69, 1–17 (1979)Google Scholar
  6. Bowen, R., Franks, J.: The periodic points of maps of the disk and the interval. Topology15, 337–342 (1976)Google Scholar
  7. Coddington, E., Levinson, N.: Theory of ordinary differential equations. New York: McGraw-Hill 1955Google Scholar
  8. Collet, P., Eckmann, J.-P.: Iterated maps on the interval as dynamical systems. Boston: Birkhäuser 1980Google Scholar
  9. Conley, C.: Isolated invariant sets and the morse index. C.B.M.S. Regional Lect.38, A.M.S. 1978Google Scholar
  10. Farmer, J.D., Ott, E., Yorke, J.A.: The dimension of chaotic attractors. Physica7 D, 153–180 (1983)Google Scholar
  11. Feigenbaum, M.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys.19, 25–52 (1978);21, 669–706 (1979)Google Scholar
  12. Franks, J., Young, L.-S.: AC 2 Kupka-Smale diffeomorphism of the disk with no sources or sinks (preprint)Google Scholar
  13. Frederickson, P., Kaplan, J., Yorke, E., Yorke, J.: The Liapunov dimension of strange attractors. J. Diff. Eq.49, 185–207 (1983)Google Scholar
  14. Grebogi, C., Ott, E., Pelikan, S., Yorke, J.: Strange attractors that are not chaotic. Physica13 D, 261–268 (1984)Google Scholar
  15. Grebogi, C., Ott, E., Yorke, J.: Crises, sudden changes in chaotic attractors, and transient chaos. Physica7 D, 181–200 (1983)Google Scholar
  16. Guckenheimer, J.: A strange attractor, pp. 368–381. In: The Hopf bifurcation and applications. Marsden and McCracken (eds.). Berlin, Heidelberg, New York: Springer 1976Google Scholar
  17. Guckenheimer, J.: Sensitive dependence on initial conditions for one-dimensional maps. Commun. Math. Phys.70, 133–160 (1979)Google Scholar
  18. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Pub. Math. I.H.E.S.50, 59–72 (1979)Google Scholar
  19. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcation of vector fields. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  20. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys.50, 69–77 (1976)Google Scholar
  21. Hirsch, M.: The dynamical systems approach to differential equations. Bull. Am. Math. Soc.11, 1–64 (1984)Google Scholar
  22. Jakobson, M.V.: Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Commun. Math. Phys.81, 39–88 (1981)Google Scholar
  23. Jonker, L., Rand, D.: Bifurcations in one dimension. Invent. Math.62, 347–365 (1981);63, 1–15 (1981)Google Scholar
  24. Kan, I.: Strange attractors of uniform flows. Thesis, Univ. Ill. Urbana 1984Google Scholar
  25. Kaplan, J.L., Mallet-Paret, J., Yorke, J.A.: The Lyapunov dimension of a nowhere differentiable attracting torus. Erg. Th. Dyn. Syst. (to appear)Google Scholar
  26. Kaplan, J.L., Yorke, J.A.: Chaotic behavior of multidimensional difference equations, pp. 204–227. In: Functional differential equations and the approximation of fixed points. Peitgen and Walther (eds.). Lecture Notes in Mathematics, Vol. 730. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  27. Lanford, O.: A computer assisted proof of the Feigenbaum conjecture. Bull. Am. Math. Soc.6, 427–434 (1982)Google Scholar
  28. La Salle, J.P.: The stability of dynamical systems. Reg. Conf. App. Math.25, S.I.A.M. 1976Google Scholar
  29. La Salle, Lefschetz, S.: Stability by Liapunov's direct method. New York: Academic Press 1961Google Scholar
  30. Li, T., Yorke, J.: Ergodic transformations from an interval into itself. Trans. Am. Math. Soc.235, 183–192 (1978)Google Scholar
  31. Liapunoff, M.A.: Problème général de la stabilité du mouvement. Annal. Math. Stud.17, Princeton Univ. Press 1947 (1907 translation from the 1892 Russian original)Google Scholar
  32. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmosph. Sci.20, 130–141 (1963)Google Scholar
  33. Mandelbrodt, B.: The Fractal Geometry of Nature. San Francisco: Freeman 1982Google Scholar
  34. Mendelson, P.: On unstable attractors. Bol. Soc. Mat. Mex.5, 270–276 (1960)Google Scholar
  35. Milnor, J., Thurston, W.: On iterated maps of the interval (in preparation)Google Scholar
  36. Misiurewicz, M.: Invariant measures for continuous transformations of [0, 1] with zero topological entropy, pp. 144–152 of Ergodic Theory, Denker and Jacobs, Lecture Notes in Mathematics, Vol. 729. Berlin, Heidelberg, New York: Springer 1979Google Scholar
  37. Misiurewicz, M.: Absolutely continuous measures for certain maps of an interval. Pub. Math. I.H.E.S.53, 17–51 (1981)Google Scholar
  38. Nusse, L.: Chaos, yet no chance to get lost. Thesis, Utrecht 1983Google Scholar
  39. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys.20, 343–344 (1971)Google Scholar
  40. Ruelle, D.: Strange attractors. Math. Intell.2, 126–137 (1979–80)Google Scholar
  41. Ruelle, D.: Small random perturbations of dynamical systems and the definition of attractor. Commun. Math. Phys.82, 137–151 (1981)Google Scholar
  42. Ruelle, D.: Small random perturbations and the definition of attractor, pp. 663–676 of Geometric Dynamics, Palis (ed.). Lecture Notes in Mathematics, Vol. 1007. Berlin, Heidelberg, New York: Springer 1983Google Scholar
  43. Schweitzer, P.A.: Counterexamples to the Seifert conjecture and opening closed leaves of foliations. Annal. Math.100, 386–400 (1974)Google Scholar
  44. Shaw, R.: Strange attractors, chaotic behavior and information flow. Z. Naturforsch. A36, 80–112 (1981)Google Scholar
  45. Smale, S.: Differential dynamical systems. Bull. Am. Math. Soc.73, 747–817 (1967)Google Scholar
  46. Smale, S.: Dynamical systems and turbulence, pp. 71–82 of Turbulence seminar, Chorin, Marsden, Smale (eds.). Lecture Notes in Mathematics, Vol. 615. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  47. Ulam, S., v. Neumann, J.: On combination of stochastic and deterministic processes. Bull. Am. Math. Soc.53, 1120 (1947)Google Scholar
  48. Williams, R.F.: The zeta function of an attractor, pp. 155–161 of Conference on the Topology of Manifolds, J. Hocking (ed.). Boston: Prindle, Weber & Schmidt 1968Google Scholar
  49. Williams, R.F.: Expanding attractors. Pub. Math. I.H.E.S.43, 169–203 (1974)Google Scholar
  50. Williams, R.F.: The structure of Lorenz attractors, pp. 94–112 of Turbulence Seminar, Chorin, Marsden, Smale (eds.). Lecture Notes in Mathematics, Vol. 615. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  51. Williams, R.F.: The structure of Lorenz attractors. Pub. Math. I.H.E.S.50, 73–100 (1979)Google Scholar
  52. Williams, R.F.: Attractors, strange and perverse (to appear)Google Scholar
  53. Zeeman, E.C.: Catastrophe theory and applications. Summer school on dynamical systems. I.C.T.P. Trieste 1983Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • John Milnor
    • 1
  1. 1.Institute for Advanced StudyPrincetonUSA

Personalised recommendations