Advertisement

Diabetologia

, Volume 6, Issue 3, pp 243–251 | Cite as

Studies in the diabetic mutant mouse: III. Physiological factors associated with alterations in beta cell proliferation

  • W. L. Chick
  • A. A. Like
Article

Summary

Beta cell replication was studied in normal (C 57 BL/Ks) and diabetic mutant (C 57 BL/Ks-db/db) mice following thymidine-3H administration. The specific activity of DNA of isolated islets (DPM/μg islet DNA) was used as an index of proliferative activity and correlated with labeling determined by radioautography. Although thymidine-3H incorporation in islets of prehyperglycemic 5 to 6 week old mutants was limited, it was significantly greater than that in normal mice. With the elevation of blood glucose values, incorporation rose sharply, reaching a maximum level above 130 mg glucose/100 ml blood. Sustained, severe hyperglycemia subsequently correlated with a decline in islet DNA synthesis. Food restriction early in the syndrome reduced hyperglycemia and resulted in low incorporation of label. Animals refed ad lib for periods of 1, 2, or 3 weeks showed significant increases in labeling, with maximal values after 1 week of refeeding. Electron microscopic radioautographs of the islets revealed labeled beta cells but no labeled alpha cells, suggesting that proliferative activity is predominantly restricted to the beta cell population.

Key-words

Diabetic mutant mouse genotype: C 57-BL/Ks-db/db hereditary diabetes in mice mutation: diabetes pancreatic islets islets of Langerhans beta cell replication mitotic activity glucose insulin diet food restriction 

Etudes de la mutation dbdb chez la souris. III. Facteurs physiologiques associés a des altérations de la prolifération des cellules B

Résumé

La division des cellulesβ a été étudiée chez la souris normale (C 57 BL/Ks) et chez son mutant diabétique (C 57 BL/Ks-db/db) après administration de3H-thymidine. L'activité spécifique de l' ADN des îlots isolés (DPM/μg ADN) sert d'index de l'activité de prolifération et est corrélée avec le marquage décélé par autoradiographie. Bien que l'incorporation de3H- thymidine dans les îlots de sourisdb/db préhyperglycémiques âgées de 5 à 6 semaines soit assez faible, elle est cependant significativement plus élevée que chez la souris normale. L'augmentation des taux de glucose sanguin s'accompagne d'un accroissement très net de l'incorporation, qui est maximale pour les glycémies supérieures à 130 mg glucose %. Une hyperglycémie sévère et prolongée s'accompagne à la suite d'une diminution de la synthèse d'ADN dans les îlots. Une diminution de l'apport alimentaire au début de la manifestation du syndrome décroît l'hyperglycémie concomitante avec une incorporation faible de la substance marquée. Lorsque ces animaux peuvent de nouveau s'alimenter à volonté pendant 1, 2 ou 3 semaines, on constante une augmentation significative du marquage atteignant un taux maximum après une semaine de réalimentation. — L'examen autoradiographique combiné à la microscopie électronique des îlots démontre la présence de radioactivité dans les cellulesβ, mais pas dans les cellulesα. Ce résultat suggère que l'activité de prolifération est essentiellement confinée aux cellulesβ.

Der Diabetes der dbdb-Maus. III. Beziehungen zwischen Stoffwechselveränderungen und B-Zell-Proliferation

Zusammenfassung

Mittels Messung der spezifischen Aktivität der DNA isolierter Langerhans'scher Inseln und radioautographischer Lokalisation der Radioaktivität nach Injektion von Thymidin-3H wurde die Vermehrung der B-Zellen im Pankreas normaler und hereditär diabetischer (db/db) Mäuse untersucht. Die Inkorporation von Radioaktivität war bei 5–6 Wochen altendb/db Tieren signifikant höher als bei den normalen Kontrolltieren. Mit Ansteigen der Blutzuckerkonzentration nahm die Inkorporation zu und erreichte bei Blutzuckerkonzentrationen über 130 mg/100 ml ihr Maximum. Anhaltend schwere Hyperglykämie war von einem progressiven Abfall der Inkorporation von Radioaktivität in die Insel-DNA begleitet. Kalorienrestriktion in einem Frühstadium des Syndroms verminderte sowohl die Hyperglykämie als auch die Inkorporation von Radioaktivität. Nach Normalisierung der Nahrungsaufnahme zeigte sich eine deutliche Erhöhung der Inkorporation, die nach einer Woche ihr Maximum erreichte. Elektronenmikroskopische Autoradiographie ergab, daß die Radioaktivität ausschließlich in den B-Zellen lokalisiert war. Markierte A-Zellen wurden nicht beobachtet. Dies weist darauf hin, daß sich die proliferative Aktivität praktisch ausschließ-lich auf die B-Zellen beschränkt.

References

  1. 1.
    Ashworth, M.A., Kerbel, N.C., Haist, R.E.: Effect of chronic caloric insufficiency on the growth of the islets of Langerhans. Amer. J. Physiol.171, 25–28 (1952).PubMedGoogle Scholar
  2. 2.
    Brosky, G., Logothetopoulos, J.: Streptozotocin diabetes in the mouse and guinea pig. Diabetes18, 606–611 (1969).PubMedGoogle Scholar
  3. 3.
    Carpenter, A.-M., Gerritsen, G.C., Dulin, W.E., Lazarow, A.: Islet and beta cell volumes in diabetic Chinese Hamsters and their nondiabetic siblings. Diabetologia3, 92–96 (1967).PubMedGoogle Scholar
  4. 4.
    Cavallero, C., Mosca, L.: Mitotic activity in the pancreatic islets of the rat under pituitary growth hormone treatment and ACTH treatment. J. Path. Bact.66, 147–150 (1953).PubMedGoogle Scholar
  5. 5.
    Chick, W.L.: Beta cell proliferation and DNA synthesis in diabetic mutant mice. Fed. Proc.28, 574 (1969).Google Scholar
  6. 6.
    Chick, W.L., Lavine, R.L., Like, A.A.: Studies in the diabetic mutant mouse. V. Glucose tolerance in mice homozygous and heterozygous for the diabetes (db) gene. Diabetologia6, 257–262 (1970).PubMedGoogle Scholar
  7. 7.
    Coleman, D.L., Hummel, K.P.: Studies with the mutation, diabetes, in the mouse. Diabetologia3, 238–248 (1967).PubMedGoogle Scholar
  8. 8.
    Coleman, D.L., Hummel, K.P.: The mutation, diabetes, in the mouse. In “Diabetes, Proceedings of the Sixth Congress of the International Diabetes Federation”, Östman, J., Ed., Milner, R.D.G., Co-Ed., pp. 813–820. Amsterdam: Excerpta Medioa Foundation 1969.Google Scholar
  9. 9.
    Davoren, P.R.: The isolation of insulin from a single cat pancreas. Biochim. biophys. Acta63, 150–153 (1962).PubMedGoogle Scholar
  10. 10.
    Hoffman, W.S.: A rapid photoelectric method for determination of glucose in blood and urine. J. biol. Chem.120, 51–55 (1937).Google Scholar
  11. 11.
    Hummel, K.P., Dickie, M.M., Coleman, D.L.: Diabetes, a new mutation in the mouse. Science153, 1127–1128 (1966).PubMedGoogle Scholar
  12. 12.
    Houssay, B.A., Bodriguez, R.R., Cardeza, A.F.: Prevention of experimental diabetes with adrenal steroids. Endocrinology54, 650–552 (1954).Google Scholar
  13. 13.
    Kinash, B., Haist, R.E.: Effect of ACTH and of cortisone on the islets of Langerhans and the pancreas in intact and hypophysectomized rats. Amer. J. Physiol.178, 441–444 (1954).PubMedGoogle Scholar
  14. 14.
    Kissane, J.M., Robins, E.: The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J. biol. Chem.233, 184–188 (1958).PubMedGoogle Scholar
  15. 15.
    Lacy, P.E., Kostianovsky, M.: Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes16, 35–39 (1967).PubMedGoogle Scholar
  16. 16.
    Lazarus, S.S., Volk, B.W.: The Pancreas in Human and Experimental Diabetes, p. 155. New York: Grune and Stratton 1962.Google Scholar
  17. 17.
    Like, A.A., Chick, W.L.: Studies in the diabetic mutant mouse: I. Light microscopy and radioautography of pancreatic islets. Diabetologia6, 207–215 (1970).PubMedGoogle Scholar
  18. 18.
    Like, A.A., Chick, W.L.: Studies in the diabetic mutant mouse. II. Electron microscopy of pancreatic islets. Diabetologia6, 216–242 (1970).PubMedGoogle Scholar
  19. 19.
    Like, A.A., Jones, E.E.: Studies on experimental diabetes in the Wellesley Hybrid Mouse. IV. Morphologic changes in islet tissue. Diabetologia3, 179–187 (1967).PubMedGoogle Scholar
  20. 20.
    Like, A.A., Miki, E.: Diabetic Syndrome in Sand Rats. IV. Morphologic changes in islet tissue. Diabetologia3, 143–166 (1967).PubMedGoogle Scholar
  21. 21.
    Logothetopoulos, J., Bell, E.G.: Histological and autoradiographic studies of the islets of mice injected with insulin antibody. Diabetes15, 205–211 (1966).PubMedGoogle Scholar
  22. 22.
    Logothetopoulos, J., Brosky, G.: Mitotic activity of islet cells in alloxan and streptozotocin diabetic mice studied with radioautography. Diabetes17 (Suppl. 1), 306 (1968).Google Scholar
  23. 23.
    Loubatières, A.: The therapeutic value of oral antidiabetics. In “Diabetes, Proceedings of the Sixth Congress of the International Diabetes Federation”, Östman, J., Ed., Milner, R.D.G., Co-Ed., pp. 737–738. Amsterdam: Excerpta Medica Foundation 1969.Google Scholar
  24. 24.
    Marks, H.P., Young, F.G.: The hypophysis and pancreatic insulin. Lancet1940 I, 493–497.Google Scholar
  25. 25.
    Martin, J.M., Lacy, P.E.: The prediabetic period in partially pancreatectomized rats. Diabetes12, 238–242 (1963).Google Scholar
  26. 26.
    Martin, J.M., Gregor, W.H., Lacy, P.E., Evens, R.G.: The effect of hyperglycemia upon islet regeneration in rats. Diabetes12, 538–544 (1963).PubMedGoogle Scholar
  27. 27.
    Messier, B., Leblond, C.P.: Cell proliferation and migration as revealed by radioautography after injection of thymidine-H3 into male rats and mice. Amer. J. Anat.106, 247–265 (1960).PubMedGoogle Scholar
  28. 28.
    Morgan, C.R., Lazarow, A.: Immunoassay of insulin: two antibody system. Diabetes12, 115–126 (1963).Google Scholar
  29. 29.
    Moskalewski, S.: Isolation and culture of the islets of Langerhans of the guinea pig. Gen. Comp. Endocr.5, 342–353 (1965).Google Scholar
  30. 30.
    Olgilvie, R.F.: Diabetogenic and pancreatotropic actions of ox anterior pituitary extracts in rabbits. J. Path. Bact.56, 225–235 (1944).Google Scholar
  31. 31.
    Petersson, B., Hellman, B.: Long-term effects of restricted caloric intake on pancreatic islet tissue in obese-hyperglycemic mice. Metabolism11, 342–348 (1962).PubMedGoogle Scholar
  32. 32.
    Schneider, W.C.: Determination of nucleic acids in tissues by pentose analysis. In “Methods in Enzymology,” Colowick, S.P., Kaplan, N.O., Eds., vol. 3 pp. 680–684. New York: Academic Press, Inc. 1957.Google Scholar
  33. 33.
    Soeldner, J.S., Slone, D.: Critical variables in the radioimmunoassay of serum insulin using the double antibody technique. Diabetes14, 771–779 (1965).PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1970

Authors and Affiliations

  • W. L. Chick
    • 1
    • 2
  • A. A. Like
    • 1
    • 2
  1. 1.Elliott P. Joslin Research Laboratory, Departments of Medicine and PathologyHarvard Medical School, The Peter Bent Brigham HospitalUSA
  2. 2.The Diabetes Foundation, Inc.BostonUSA

Personalised recommendations