algebra universalis

, Volume 26, Issue 3, pp 346–350 | Cite as

A note on large minimally free algebras

  • Paul Bankston


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Bankston andR. Schutt,On minimally free algebras, Can. J. Math.37 (1985), 963–978.Google Scholar
  2. [2]
    P.Bankston and R. A.McCoy,On the classification of minimally free rings of continuous functions, (to appear in the Proc. of the Conf. on Gen. Top. and Appl., Wesleyan Univ., June 1988).Google Scholar
  3. [3]
    G. Birkhoff,On the structure of abstract algebras, Proc. Camb. Phil. Soc.31 (1935), 433–454.Google Scholar
  4. [4]
    R. A. Bowshell andP. Schultz,Unital rings whose additive endomorphisms commute, Math. Ann.228 (1977) 197–214.Google Scholar
  5. [5]
    P. M. Cohn,Universal Algebra, D. Reidel, Dordrecht, 1981.Google Scholar
  6. [6]
    M. Dugas, A. Mader andC. Vinsonhaler,Large E-rings exist, J. Alg.108 (1987), 88–101.Google Scholar
  7. [7]
    E. Fried andJ. Sichler,Homomorphisms of commutative rings with unit elements, Pacific J. Math.45 (1973), 485–491.Google Scholar
  8. [8]
    G. Grätzer andJ. Sichler,On the endomorphism semigroup (and category) of bounded lattices, Pacific J. Math.35 (1970), 631–647.Google Scholar
  9. [9]
    Z. Hedrlín andJ. Lambek,How comprehensive is the category of semigroups?, J. Alg.11 (1969), 195–212.Google Scholar
  10. [10]
    I. Kříž andA. Pultr,Large k-free algebras, Alg. Univ.21 (1985), 46–53.Google Scholar
  11. [11]
    H. Neumann,Varieties of Groups, Ergebnisse der Math, und ihrer Grenzgebiete, Band 37, Springer-Verlag, Berlin-New York, 1967.Google Scholar
  12. [12]
    P. Pröhle,Does a given subfield of characteristic zero imply any restriction to the endomorphism monoids of fields?, Acta Math.50 (1986), 15–38.Google Scholar
  13. [13]
    R.Schutt, (private communication).Google Scholar
  14. [14]
    J. Sichler,Category of commutative groupoids is binding, Comment, Math. Univ. Carolinae8 (1967), 753–755.Google Scholar

Copyright information

© Birkhäuser Verlag 1989

Authors and Affiliations

  • Paul Bankston
    • 1
  1. 1.Department of MathematicsMarquette UniversityMilwaukee

Personalised recommendations