Communications in Mathematical Physics

, Volume 104, Issue 2, pp 207–226 | Cite as

Central charges in the canonical realization of asymptotic symmetries: An example from three dimensional gravity

  • J. D. Brown
  • Marc Henneaux


It is shown that the global charges of a gauge theory may yield a nontrivial central extension of the asymptotic symmetry algebra already at the classical level. This is done by studying three dimensional gravity with a negative cosmological constant. The asymptotic symmetry group in that case is eitherR×SO(2) or the pseudo-conformal group in two dimensions, depending on the boundary conditions adopted at spatial infinity. In the latter situation, a nontrivial central charge appears in the algebra of the canonical generators, which turns out to be just the Virasoro central charge.


Gauge Theory Central Charge Cosmological Constant Classical Level Central Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abbott, L. F., Deser, S.: Stability of gravity with a cosmological constant. Nucl. Phys.B195, 76 (1982)Google Scholar
  2. 2.
    Abbott, L. F., Deser, S.: Charge definition in non-Abelian gauge theories, Phys. Lett.116B, 259 (1982)Google Scholar
  3. 3.
    Geroch, R.: Asymptotic structure of space-time. In: Asymptotic structure of space-time, Esposito, F. P., Witten, L. (eds.) New York: Plenum Press 1977Google Scholar
  4. 4.
    Ashtekar, A.: Asymptotic structure of the gravitational field at spatial infinity. In: General relativity and gravitation: One hundred years after the birth of Albert Einstein, vol. 2 Held, A. (ed.). New York: Plenum Press 1980. See also his contribution in Proceedings of the Oregon conference on mass and asymptotic structure of space-time. Flaherty, F. (ed.). Berlin, Heidelberg, New York: Springer 1984Google Scholar
  5. 5.
    Nelson, P., Manohar, A.: Global color is not always defined. Phys. Rev. Lett.50, 943 (1983); Balachandran, A. P., Marmo, G., Mukunda, N., Nilsson, J. S., Sudarshan, E. C. G., Zaccaria, F.: Monopole topology and the problem of color. Phys. Rev. Lett.50, 1553 (1983)Google Scholar
  6. 6.
    Henneaux, M.: Energy-momentum, angular momentum, and supercharge in 2 + 1 supergravity. Phys. Rev.D29, 2766 (1984); Deser, S.: ‘Breakdown of asymptotic Poincaré invariance inD = 3 Einstein gravity.’ Class. Quantum Grav.2, 489 (1985)Google Scholar
  7. 7.
    Arnold, V.: Mathematical methods of classical mechanics. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  8. 8.
    Regge, T., Teitelboim, C.: Role of surface integrals in the Hamiltonian formulation of general relativity. Ann. Phys. (N.Y.)88, 286 (1974)Google Scholar
  9. 9.
    See for instance Scherk, J.: An introduction to the theory of dual models and strings. Rev. Mod. Phys.47, 123 (1975)Google Scholar
  10. 10.
    Brown, J. D., Henneaux, M.: to appear, J. Math. Phys.Google Scholar
  11. 11.
    Jackiw, R.: Introduction to the Yang-Mills quantum theory. Rev. Mod. Phys.52, 661 (1980)Google Scholar
  12. 12.
    Deser, S., Jackiw, R., 't Hooft, G.: Three-dimensional Einstein gravity: Dynamics of flat space. Ann. Phys.152, 220 (1984)Google Scholar
  13. 13.
    Deser, S., Jackiw, R.: Three-dimensional cosmological gravity: Dynamics of constant curvature. Ann. Phys.153, 405 (1984)Google Scholar
  14. 14.
    See for example, Dirac, P. A. M.: The theory of gravitation in Hamiltonian form. Proc. Roy. Soc.A246, 333 (1958); Arnowitt, R., Deser, S., Misner, C. W.: In: Gravitation: An introduction to current research. Witten L. (ed.). New York: Wiley 1962Google Scholar
  15. 15.
    Henneaux, M., Teitelboim, C.: Asymptotically anti-de Sitter spaces. Commun. Math. Phys.98, 391 (1985)Google Scholar
  16. 16.
    Benguria, R., Cordero, P., Teitelboim, C.: Aspects of the Hamiltonian dynamics of interacting gravitational gauge and Higgs fields with applications to spherical symmetry. Nucl. Phys.B122, 61 (1977)Google Scholar
  17. 17.
    Penrose, R.: In: Relativity, groups, and topology. Dewitt C., De Witt B. (eds.). New York: Gordon and Breach 1964Google Scholar
  18. 18.
    Hanson, A., Regge, T., Teitelboim, C.: Constrained Hamiltonian systems. Acc. Naz. dei Lincei, Rome 1976Google Scholar
  19. 19.
    Teitelboim, C.: Commutators of constraints reflect the spacetime structure. Ann. Phys. (N.Y.)79, 542 (1973)Google Scholar
  20. 20.
    This has been recognized independently by A. Ashtekar and A. Magnon-Ashtekar (private communication)Google Scholar
  21. 21.
    See for instance, Faddeev, L. D.: Operator anomaly for the Gauss law. Phys. Lett.145B, 81 (1984); Alvarez, O., Singer, I. M., Zumino, B.: Gravitational anomalies and the family's index theorem. Commun. Math. Phys.96, 409 (1984); and references thereinGoogle Scholar
  22. 22.
    See for instance, Jackiw, R.: Three-cocycle in mathematics and physics. Phys. Rev. Lett.54, 159 (1985); Grossman, B.: A 3-cocycle in quantum mechanics. Phys. Lett.152B, 93 (1985); Wu, Y. S., Zee, A.: Cocycles and magnetic monopole. Phys. Lett.152B, 98 (1985); Boulware, D. G., Deser, S., Zumino, B.: Absence of 3-cocycles in the Dirac monopole problem. Phys. Lett.153B, 307 (1985)Google Scholar
  23. 23.
    For example, in the problem of spacetime symmetries of gauge fields, see Henneaux, M.: Remarks on spacetime symmetries and nonabelian gauge fields. J. Math. Phys.23, 830 (1982)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. D. Brown
    • 1
  • Marc Henneaux
    • 1
  1. 1.Center for Theoretical PhysicsThe University of Texas at AustinAustinUSA

Personalised recommendations