Mathematics of Control, Signals and Systems

, Volume 5, Issue 3, pp 295–312 | Cite as

Global asymptotic stabilization for controllable systems without drift

  • Jean -Michel Coron


This paper proves that the accessibility rank condition on ℝ n {0} is sufficient to guarantee the existence of a global smooth time-varying (but periodic) feedback stabilizer, for systems without drift. This implies a general result on the smooth stabilization of nonholonomic mechanical systems, which are generically not smoothly stabilizable using time-invariant feedback.

Key words

Asymptotic stabilization Controllability Time-varying feedback 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    R. W. Brockett, Asymptotic stability and feedback stabilization, inDifferential Geometric Control Theory (R. W. Brockett, R. S. Millman, and H. J. Sussmann, eds.), Birkhäuser, Basel, 1983.Google Scholar
  2. [CAB]
    G. Campion, B. d'Andréa-Novel, and G. Bastin, Modelling and state feedback control of nonholonomic mechanical systems, preprint, LAAS Louvain la Neuve, ENSMP Fontainebleau, 1990.Google Scholar
  3. [C]
    J.-M. Coron, Linearized control systems and applications to smooth stabilization, preprint, Université Paris-Sud, 1992.Google Scholar
  4. [CA]
    J.-M. Coron and B. d'Andréa-Novel, Smooth stabilizing time-varying control laws for a class of nonlinear systems. Application to mobile robots, preprint, Université Paris-Sud and ENSMP Fontainebleau, 1991.Google Scholar
  5. [CP]
    J.-M. Coron and J.-B. Pomet, A remark on the design of time-varying stabilizing feedback laws for controllable systems without drift, preprint, Université Paris-Sud and ECNantes, 1991.Google Scholar
  6. [D]
    J. Dieudonné,Foundations of Modern Analysis, Academic Press, New York, 1960.Google Scholar
  7. [G]
    M. Gromov,Partial Differential Relations, Ergebnisse Mathematik 3, Folge 9, Springer-Verlag, Berlin, 1986.Google Scholar
  8. [INS]
    A. Ilchmann, I. Nürnberger, and W. Schmale, Time-varying polynomial matrix systems,Internat. J. Control,40 (1984), 329–362.Google Scholar
  9. [K]
    J. Kurzweil, On the inversion of Lyapunov's second theorem on stability of motion,Ann. Math. Soc. Transl., Ser. 2,24 (1956), 19–77.Google Scholar
  10. [P]
    J.-B. Pomet, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift,Systems Control Lett., to appear.Google Scholar
  11. [SI]
    C. Samson, Velocity and torque feedback control of a wheeled mobile robot: Stability analysis, preprint, INRIA, Sophia-Antipolis, 1990.Google Scholar
  12. [S2]
    R. Sepulchre, private communication, 1991.Google Scholar
  13. [SM]
    L. M. Silverman and H. E. Meadows, Controllability and observability in time variable linear systems,SIAM J. Control,5 (1967), 64–73.Google Scholar
  14. [S3]
    E. D. Sontag, Finite-dimensional open-loop control generators for non-linear systems,Internat. J. Control,47 (1988), 537–556.Google Scholar
  15. [S4]
    E. D. Sontag, Feedback stabilization of nonlinear systems, inRobust Control of Linear Systems and Nonlinear Control (M. A. Kaashoek, J. H. van Schuppen, and A. C. M. Ran, eds.), Birkhäuser, Cambridge, MA, 1990, pp. 61–81.Google Scholar
  16. [S5]
    E. D. Sontag,Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer-Verlag, New York, 1990.Google Scholar
  17. [SS]
    E. D. Sontag and H. J. Sussmann, Remarks on continuous feedback, inProceedings of the 19th IEEE Conference on Decision and Control, Albuquerque, NM, 1980, pp. 916–921.Google Scholar
  18. [T]
    J. Tsinias, Sufficient Lyapunov-like conditions for stabilization,Math. Control Signals Systems,2 (1989), 343–357.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • Jean -Michel Coron
    • 1
  1. 1.Laboratoire d'Analyse NumériqueUniversité Paris-SudOrsayFrance

Personalised recommendations