Formal Aspects of Computing

, Volume 5, Issue 3, pp 224–252

TIC: A timed calculus

Article

Abstract

TIC is a timed algebraic calculus which combines ideas from asynchronous and synchronous calculi. Time is introduced by assigning explicit time restrictions to the events of an asynchronous calculus. The semantics is defined in an operational way. Interleaving of behaviours is defined in such a way that a proper merge of events in time is achieved. Weak timed bisimulation is also defined. Examples are presented to show the applicability of the calculus to the study of timed behaviours.

Keywords

Time Timed algebraic calculus TIC Weak bisimulation equivalence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AuB87]
    Austry, D. and Boudol, G.: Algebre de Processus et Synchronisation.J TCS, 53:225–241, 1987.Google Scholar
  2. [Azc89]
    Azcorra, A.:Modelado Formal de Sistemas Sincronos. PhD thesis, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politecnica de Madrid, 1989.Google Scholar
  3. [BaB91]
    Baeten, J. C. M. and Bergstra, J. A.: Real Time Process Algebra.Formal Aspects of Computing, 3(2):142–188, 1991.Google Scholar
  4. [BeK85]
    Bergstra, J. A. and Klop, J. W.: Algebra of Communicating Processes with Abstraction.Theoretical Computer Science, 37(1):77–121, 1985.Google Scholar
  5. [BoL91]
    Bolognesi, T. and Lucidi, F.: LOTOS-like Process Algebras with Urgent or Timed Interactions. InFORTE'91: Formal Techniques IV, Sidney, November 1991.Google Scholar
  6. [BLT90]
    Bolognesi, T., Lucidi, F. and Trigila, S.: From Timed Petri Nets to Timed LOTOS. In L. Logrippo, R. Probert, and H. Ural, editors,Tenth International IFIP Symposium on Protocol Specification, Testing and Verification, pages 377–406. North-Holland, June 1990.Google Scholar
  7. [BeR85]
    Bolognesi, T. and Rudin, H.: On the Analisys of Time-Dependent Protocols by Network Flow Algorithms. InFifth International Workshop on Protocol Specification, Testing and Verification, New York, June 1985.Google Scholar
  8. [BSS86]
    Brinksma, E., Scollo, G. and Steenbergen, C.: LOTOS Specifications, their Implementation and their Tests. InSixth International Workshop on Protocol Specification, Testing and Verification, Montreal, June 1986.Google Scholar
  9. [dNH84]
    Nicola, R. de. and Hennessy, M.: Testing Equivalences for Processes.Theoretical Computer Science, 34(1,2):83–133, Nov 1984.Google Scholar
  10. [GeB87]
    Gerth, R. and Boucher, A.:A timed Failures Model for Extended Communicating Processes, volume LNCS. ICALP 87, 1987.Google Scholar
  11. [Hoa85]
    Hoare, C.A.R.:Communicating Sequential Processes. Prentice-Hall Int., 1985.Google Scholar
  12. [HeR90]
    Hennessy, M. and Regan, T.: A Temporal Process Algebra. InFORTE'90: Formal Techniques III, Madrid, November 1990.Google Scholar
  13. [ISO88]
    ISO. LOTOS a Formal Description Technique based on the Temporal Ordering of Observational Behaviour. IS 8807, TC97/SC21, 1988.Google Scholar
  14. [K+85]
    Koymans, R., et al.: Compositional Semantics for Real Time Distributed Computing. InConference on Logics of Programs. Springer Verlag, 1985.Google Scholar
  15. [LeS87]
    Leveson, N.G. and Stolzy, J.L.: Safety analysis using Petri nets.IEEE Transactions on Software Engineering, 13(3), 1987.Google Scholar
  16. [MeF76]
    Merlin, P. M. and Farber, D. J.: Recoverability of Communication Protocols — Implication of a theoretical Study.IEEE Trans, on Com., 24:1036–1043, Sep 1976.Google Scholar
  17. [Mig91]
    Nieto, C. M.:Tecnicas de descripcion Formal aplicadas la Evaluacion de Prestaciones de Sistemas de Comunicacion. PhD thesis, Escuela Tecnica Superior de Ingenieros de Telecomunicacion, Universidad Politecnica de Madrid, 1991.Google Scholar
  18. [Mil80]
    Milner, R.:Calculus of Communicating Systems. Number 92 in Lecture Notes in Computer Science. Springer Verlag, Berlin, 1980.Google Scholar
  19. [Mil83]
    Milner, R.: Calculi for Synchrony and Asynchrony.Theoretical Computer Science, 25:267–310, 1983.Google Scholar
  20. [Mil85]
    Milne, G.: CIRCAL and the Representation of Communication, Concurrency and Time.ACM, TOPLAS, 7(2):270–298, April 1985.Google Scholar
  21. [MoT90]
    Moller, F. and Tofts, C.:A Temporal Calculus of Communicating Systems, pages 401–415. Number LNCS-458, ISBN 3-540-53048-7 in Lecture Notes in Computer Science. Springer-Verlag, Berlin Heidelberg, New York, 1990.Google Scholar
  22. [NRS90]
    Nicollin, X., Ritchier, J. L., Sifakis, J. and Voiron, J.: ATP: An Algebra for Timed Processes. InTC2 Working Conference on Programming Concepts and Methods. North Holland, 1990.Google Scholar
  23. [OdF90]
    Ortega, Y. and de Frutos, D.: Timed Observations: A semantic Model for Real-Time Concurrency. InTC2 Working Conference on Programming Concepts and Methods. North Holland, 1990.Google Scholar
  24. [OdF91]
    Ortega, Y. and de Frutos, D.: A Complete Proof System for Timed Observations. InTAPSOFT'91 (CAAP'91). LNCS 493, Springer Verlag, 1991.Google Scholar
  25. [Par81]
    Park, D.:Concurrency and Automata on Infinite Sequences, volume 104 ofLNCS. Springer-Verlag, 1981.Google Scholar
  26. [QAF89]
    Quemada, J., Azcorra, A. and de Frutos, D.: A Timed Calculus for LOTOS. InFORTE'89: Formal Techniques II, Vancouver, December 1989.Google Scholar
  27. [QuF87]
    Quemada, J. and Fernandez, A.: Introduction of Quantitative Relative Time into LOTOS. InIFIP workshop on Protocol Specification, Testing and Verification: VII, Zurich, May 5, 1987.Google Scholar
  28. [QPF89]
    Quemada, J., Pavon, S. and Fernandez, A.: State Exploration by Transformation with LOLA. InWorkshop on Automatic Verification Methods for Finite State Systems, Grenoble, June 1989.Google Scholar
  29. [ReR86]
    Reed, G. M. and Roscoe, A. W.: A timed model for communicating sequential processes. InICALP 86, volume LNCS 226. Springer Verlag, 1986.Google Scholar
  30. [ReR87]
    Reed, G. M. and Roscoe, A. W.:Metric Spaces as Models for Real-Time Concurrency. Springer Verlag, 1987.Google Scholar
  31. [Tof88]
    Tofts, C.: Temporal Ordering for Concurrency. Technical report, University of Edinburgh, April 1988.Google Scholar

Copyright information

© BCS 1993

Authors and Affiliations

  • Juan Quemada
    • 1
  • David de Frutos
    • 2
  • Arturo Azcorra
    • 1
  1. 1.Departmento Ingeniería Telemática, ETSI TelecomunicaciónUniversidad Politécnica de MadridMadridSpain
  2. 2.Dpto. Informática y Automática, Fac. Ciencias MatemáticasUniversidad ComplutenseMadridSpain

Personalised recommendations