Advertisement

Communications in Mathematical Physics

, Volume 106, Issue 1, pp 1–40 | Cite as

Theta functions, modular invariance, and strings

  • Luis Alvarez-Gaumé
  • Gregory Moore
  • Cumrun Vafa
Article

Abstract

We use Quillen's theorem and algebraic geometry to investigate the modular transformation properties of some quantities of interest in string theory. In particular, we show that the spin structure dependence of the chiral Dirac determinant on a Riemann surface is given by Riemann's theta function. We use this result to investigate the modular invariance of multiloop heterotic string amplitudes.

Keywords

Neural Network Statistical Physic Complex System String Theory Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schwarz, J.: Superstrings: The first fifteen years, Vol. 5, I, II. New York: World Scientific 1985Google Scholar
  2. 2.
    Polyakov, A.M.: Quantum geometry of bosonic strings. Phys. Lett.103B, 207 (1981); Quantum geometry of fermionic strings. Phys. Lett.103B, 211 (1981)Google Scholar
  3. 3.
    Friedan, D., Martinec, E., Shenker, S.: Conformal innvriance, supersymmetry, and strings. Princeton preprintGoogle Scholar
  4. 4.
    Martinec, E.: Nonrenormalization theorems and fermionic string finiteness. Princeton preprintGoogle Scholar
  5. 5.
    Gross, D.J., Harvey, J.A., Martinec, E., Rohm, R.: Phys. Rev. Lett.54, 502 (1985); Nucl. Phys. B256, 253 (1985), and Nucl. Phys. B (to appear)Google Scholar
  6. 6.
    Dixon, L., Harvey, J., Vafa, C., Witten, E.: Strings on orbifolds I. Nucl. Phys. B261, 651 (1985). Strings on orbifolds II. Princeton preprintGoogle Scholar
  7. 7.
    Farkas, H.M., Kra, I.: Riemann surfaces. Berlin, Heidelberg, New York: Springer 1980Google Scholar
  8. 8.
    See, for example J. Birman in W.J. Harvey (ed.), Discrete groups and automorphic functions. New York: Academic Press 1977; L. Greenberg (ed.), Discontinuous groups and Riemann surfaces, Princeton, NJ: Princeton University Press 1974Google Scholar
  9. 9.
    Magnus, Karras, Solitar: Combinatorial group theory. New York: Interscience 1966Google Scholar
  10. 10.
    Milnor, J.W., Stasheff, J.D.: Characteristic classes. Ann. Math. Studies, Vol. 76. Princeton, NJ: Princeton University Press 1974Google Scholar
  11. 11.
    Griffiths, P., Harris, J.: Principles of algebraic geometry. New York: Wiley 1978Google Scholar
  12. 12.
    Gunning, R.: Introduction to Riemann surfaces princeton Math. Notes. Princeton, NJ: Princeton University Press 1966Google Scholar
  13. 13.
    Mumford, D.: Tata lectures on theta, Vols. I, II. Boston: Birkhäuser 1983Google Scholar
  14. 14.
    Fay, J.: Theta functions on Riemann surfaces Springer notes in math., Vol. 352. Berlin, Heidelberg, New York: Springer 1973Google Scholar
  15. 15.
    Quillen, D.: Determinants of Cauchy-Riemann operators on Riemann surfaces. Funkts. Anal. Prilozh.19, 37 (1985)Google Scholar
  16. 16.
    Alvarez, O.: Conformal anomalies and the index theorem. Berkeley preprintGoogle Scholar
  17. 17.
    Moore, G., Nelson, P., Polchinski, J.: Strings and supermoduli. Phys. Lett.169B, 47 (1986)Google Scholar
  18. 18.
    Belavin, A.A., Knizhnik, V.G.: Algebraic geometry and the geometry of quantum strings. Landau Institute preprint; See also, Catenacci, R., Cornalba, M., Martellini, M., Reina, C.: Algebraic geometry and path integrals for closed strings; Bost, J.B., Jolicoeur, J.: A holomorphy property and critical dimension in string theory from an index theorem. Saclay PhT/86-28Google Scholar
  19. 19.
    Alvarez-Gaumé, L., Witten, E.: Gravitational anomalies. Nucl. Phys. B234, 269 (1984)Google Scholar
  20. 20.
    Actually, this particular example is well-known to physicists. See, for example, Jackiw, R.: Topological methods in field theory. Les Houches lectures 1983. What is new here is the better geometrical understanding in terms of holomorphic line bundles, and the idea that holomorphy is a powerful tool for understanding determinantsGoogle Scholar
  21. 21.
    The generalization of Quillen's theorem has been independently derived by Belavin and Knizhnik. We thank Stephen Della Pietra for pointing out an error in an earlier version of Eq. (4.15). We also thank Phil Nelson and Joe Polchinski for discussions on the application of Eq. (4.15) to holomorphic factorization on moduli space, and on the important difference between Eq. (4.15) and Eq. (4.16)Google Scholar
  22. 22.
    Bismut, J.-M., Freed, D.S.: Geometry of elliptic families: Anomalies and determinants. M.I.T. preprint; The analysis of elliptic families: Metrics and connections on determinant bundles. Commun. Math. Phys. (in press); The analysis of elliptic families: Dirac operators, eta invariants, and the holonomy theorem. Commun. Math. Phys. (in press)Google Scholar
  23. 23.
    This can also be understood from the point of view of Wolpert, S.: On obtaining a positive line bundle from the Weil-Petersson class. Am. J. Math.107, 1485 (1985)Google Scholar
  24. 24.
    Bers, L.: Finite dimensional Teichmüller spaces and generalizations. Bull. Am. Math. Soc.5, 131 (1981)Google Scholar
  25. 25.
    Friedan, D.: Introduction to Polyakov's string theory. In: Zuber, J.-B., Stora, R. (eds.). Les Houches 1982. Recent advances in field theory and statistical mechanics. Amsterdam: Elsevier 1984Google Scholar
  26. 26.
    We owe this observation to Phil NelsonGoogle Scholar
  27. 27.
    Atiyah, M.: Riemann surfaces and spin structures. Ann. Sci. Ec. Norm. Super.4 (1971)Google Scholar
  28. 28.
    In fact, more is true: thenumber of zero modes is given by the multiplicity of the zero of ϑ. See [14] and Mumford, D.: Theta characteristics of an algebraic curve. Ann. Sci. Éc. Norm. Supér.4, 24 (1971)Google Scholar
  29. 29.
    Hitchin, N.: Harmonic spinors. Adv. Math.14, 1–55 (1974)Google Scholar
  30. 30.
    Witten, E.: Global anomalies in string theory. In: Geometry anomalies topology. Bardeen, W.A., White, A.R. (eds.). New York: World Scientific 1985Google Scholar
  31. 31.
    Seiberg, N., Witten, E.: Spin structures in string theory. Princeton preprintGoogle Scholar
  32. 32.
    Alvarez-Gaumé, L., Ginsparg, P., Moore, G., Vafa, C.: AnO(16) ×O(16) heterotic string. Harvard preprint HUTP-86/AO13Google Scholar
  33. 33.
    For a pedagogical treatment and further references to the literature see Nelson, P., Moore, G.: Heterotic geometry. Harvard preprint HUTP-86/A014Google Scholar
  34. 34.
    Alvarez, O.: Theory of strings with boundary: Topology, fluctuations, geometry. Nucl. Phys. B216, 125 (1983)Google Scholar
  35. 35.
    Polchinski, J.: Evaluation of the one loop string path integral. Commun. Math. Phys.104, 37 (1986)Google Scholar
  36. 36.
    Moore, G., Nelson, P.: Measure for moduli: The Polyakov string has no nonlocal anomalies. Nucl. Phys. B266, 58 (1986)Google Scholar
  37. 37.
    D'Hoker, E., Phong, D.: Multiloop amplitudes for the bosonic string. Nucl. Phys. B269, 205 (1986)Google Scholar
  38. 38.
    D'Hoker, E., Phong, D.: Loop amplitudes for the fermionic string. CU-TP-340Google Scholar
  39. 39.
    Shapiro, J.: Loop graph in the dual-tube model. Phys. Rev. D5, 1945 (1972); Rohm, R.: Spontaneous supersymmetry breaking in supersymmetric string theories. Nucl. Phys. B237, 553 (1984)Google Scholar
  40. 40.
    Gliozzi, F., Scherk, J., Olive, D.: Supersymmetry, supergravity theories and the dual spinor model. Nucl. Phys. B122, 253 (1977)Google Scholar
  41. 41.
    In preparationGoogle Scholar
  42. 42.
    Igusa, J.: Theta functions. Berlin, Heidelberg, New York: Springer 1972Google Scholar
  43. 43.
    Vafa, C.: Modular invariance and discrete torsion on orbifoldsGoogle Scholar
  44. 44.
    Dixon, L., Harvey, J.: String theories in ten dimensions without spacetime supersymmetry. Princeton preprintGoogle Scholar
  45. 45.
    After this work was completed we received a preprint in which this question is answered in the affirmative. See Manin, Yu.I.: The partition function of the Polyakov string can be expressed in terms of theta functions. Phys. Lett. (submitted)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Luis Alvarez-Gaumé
    • 1
  • Gregory Moore
    • 1
  • Cumrun Vafa
    • 1
  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations