Communications in Mathematical Physics

, Volume 104, Issue 1, pp 37–47 | Cite as

Evaluation of the one loop string path integral

  • Joseph Polchinski


We evaluate Polyakov's path integral for the sum over all closed surfaces with the topology of a torus, in the critical dimensiond = 26. The result is applied to the partition function and cosmological constant of the free bosonic string, and to tachyon scattering amplitudes.


Neural Network Statistical Physic Complex System Partition Function Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Polyakov, A. M.: Quantum geometry of bosonic strings. Phys. Lett.103B, 207 (1981)Google Scholar
  2. 2.
    Shapiro, J. A.: Loop graph in the dual-tube model. Phys. Rev.D5, 1945 (1972)Google Scholar
  3. 3.
    Friedan, D.: In: 1982 Les Houches Summer School. Zuber, J.-B., Stora, R. (eds.) Amsterdam: North Holland 1984Google Scholar
  4. 4.
    Alvarez, O.: Theory of strings with boundaries: Fluctuations, topology and quantum geometry. Nucl. Phys.B216 125 (1983)Google Scholar
  5. 5.
    Schiffer, M., Spencer, D. C.: Functionals of finite Riemann surfaces Princeton NJ: Princeton University Press 1954Google Scholar
  6. 6.
    Weinberg, S.: Texas preprint UTTG-05-85 (1985)Google Scholar
  7. 7.
    Schwarz, J. H.: Superstring theory. Phys. Rep.89, 223 (1982)Google Scholar
  8. 8.
    Rohm, R.: Spontaneous supersymmetry breaking in supersymmetric string theories. Nucl. Phys.B237, 553 (1984)Google Scholar
  9. 9.
    Brink, L., Nielsen, M. B.: A simple physical interpretation of the critical dimension of space-time in dual models. Phys. Lett.45B, 332 (1973)Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Joseph Polchinski
    • 1
  1. 1.Theory Group, Physics DepartmentUniversity of TexasAustinUSA

Personalised recommendations