Archiv der Mathematik

, Volume 49, Issue 4, pp 316–325

Representing compact sets of compact operators and of compact range vector measures

  • William H. Graves
  • Wolfgang M. Ruess
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Batt andE. J. Berg, Linear Bounded Transformations on the Space of Continuous Functions. J. Funct. Anal.4, 215–239 (1969).Google Scholar
  2. [2]
    J. K. Brooks andN. Dinculeanu, Strong Additivity, Absolute Continuity, and Compactness in Spaces of Measures. J. Math. Anal. Appl.45, 156–175 (1974).Google Scholar
  3. [3]
    J. K.Brooks and N.Dinculeanu, Weak and Strong Compactness in the Space of Pettis Integrable Functions. Proc. Conf. Integration, Topology and Geometry in Linear Spaces. Amer. Math. Soc. Contemporary Math.2; Amer. Math. Soc., Providence, RI, 161–187; 1980.Google Scholar
  4. [4]
    J. K. Brooks andP. W. Lewis, Linear Operators and Vector Measures. Trans. Amer. Math. Soc.192, 139–162 (1974).Google Scholar
  5. [5]
    R. C. Buck, Bounded continuous functions on a locally compact space. Michigan Math. J.5, 95–104 (1958).Google Scholar
  6. [6]
    W. H. Graves andW. M. Ruess, Compactness and Weak Compactness in Spaces of Compact-Range Vector Measures. Canad. J. Math.36, 1000–1020 (1984).Google Scholar
  7. [7]
    A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Amer. Math. Soc. Memoirs16. Amer. Math. Soc., Providence, RI, 1955.Google Scholar
  8. [8]
    J. Harksen, Charakterisierung lokalkonvexer Räume mit Hilfe von Tensornormtopologien. Math. Nachr.106, 347–374 (1982).Google Scholar
  9. [9]
    W. B. Johnson, Factoring Compact Operators. Israel J. Math.9, 337–345 (1971).Google Scholar
  10. [10]
    J.Lindenstrauss and L.Tzafriri, Classical Banach Spaces. LNM338, Berlin-Heidelberg-New York 1973.Google Scholar
  11. [11]
    G. Noël, Une caractérisation tensorielle des espaces ℒ1 et ℒ. C. R. Acad. Sci.273, A235-A237 (1971).Google Scholar
  12. [12]
    D. J. Randtke, A Structure Theorem for Schwartz Spaces. Math. Ann.201, 171–176 (1973).Google Scholar
  13. [13]
    D. J. Randtke, A Compact Operator Characterization of ℓ1. Math. Ann.208, 1–8 (1974).Google Scholar
  14. [14]
    W. M. Ruess, Compactness and Collective Compactness in Spaces of Compact Operators. J. Math Anal. Appl.84, 400–417 (1981).Google Scholar
  15. [15]
    P. Saphar, Produits tensoriels d'espaces de Banach et classes d'applications linéaires. Studia Math.38, 71–100 (1970).Google Scholar
  16. [16]
    T. Terzioglu, A Characterization of Compact Linear Mappings. Arch. Math.22, 76–78 (1971).Google Scholar
  17. [17]
    T. Terzioglu, Remarks on Compact and Infinite-Nuclear Mappings. Math. Balkanica2, 251–255 (1972).Google Scholar

Copyright information

© Birkhäuser Verlag 1987

Authors and Affiliations

  • William H. Graves
    • 1
  • Wolfgang M. Ruess
    • 2
  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA
  2. 2.Fachbereich MathematikUniversität EssenEssen 1

Personalised recommendations