Structural optimization

, Volume 18, Issue 1, pp 12–23

# A hierarchical design concept for shape optimization based on the interaction of CAGD and FEM

• A. Falk
• F. -J. Barthold
• E. Stein
Research Papers

## Abstract

The numerical treatment of shape optimization problems requires sophisticated software tools such as Computer Aided Design (CAD), the Finite Element Method (FEM) and a suitable Mathematical Programming (MP) algorithm. Efficiency of the overall procedure is guaranteed if these tools interact optimally. The theoretical and numerical effort for sensitivity analysis reflect the complexity of this engineering problem.

In this paper we outline a general modelling concept for shape optimization problems. Hierarchical design models within Computer Aided Geometrical Design (CAGD) and the interaction of geometry and FEM lead to an efficient overall optimization procedure. Our concept has been derived, implemented and tested for shell structures but it is seen to be generally applicable.

After a short introduction containing the state of the art we give an overview of the numerical tools used and outline the interaction of CAGD and FEM within the overall optimization procedure.

The paper is mainly devoted to the hierarchical design space based on a hierarchical geometrical modelling. The major part of computational effort is consumed by sensitivity analysis related to the number of design variables. Therefore, this number should be limited and only few powerful design variables corresponding to the special interests of the considered problem should be defined. This procedure may lead to a considerable limitation of the design space. Based on a hierarchy in the geometrical model different types of design variables are introduced: design variables with global, regional and local influence. The new method is based on successive activation of these types of design variables. This procedure leads to a considerable reduction of computational time for the sensitivity analysis without loss of geometrical flexibility.

A new method of geometrical refinement and a successive adaptively driven expansion and reduction of the design space is described. It is based on the degree elevation or degree reduction of parametric curves and surfaces, respectively.

A numerical example illustrates the new method and the efficiency of the overall optimization procedure.

## Keywords

Finite Element Method Design Variable Optimization Procedure Design Space Shape Optimization
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. Banichuk, N.V. 1993: Shape design sensitivity analysis for optimization problems with global and local functionals. Lecture held at the Institute of Structural Mechanics and Computational Mechanics, University of HannoverGoogle Scholar
2. Banichuk, N.V.; Barthold, F.-J.; Falk, A.; Stein, E. 1995: Mesh refinement for shape optimization.Struct. Optim. 9, 46–51Google Scholar
3. Banichuk, N.V.; Barthold, F.-J.; Falk, A.; Stein, E. 1996: Finite element analysis with mesh refinement for shape optimization.Control & Cybernetics 25, 657–664Google Scholar
4. Barthold, F.-J.; Stein, E. 1994: A continuum mechanical approach for analytical sensitivity analysis in structural optimization. In: Neittaanmäki, P. (ed.)Proc. of the 5th Finish Mechanics Days (held at University of Jyväskylä, Finnland, May 26–27 1994).Google Scholar
5. Barthold, F.-J.; Stein, E. 1996: A continuum mechanical based formulation of the variational sensitivity analysis in structural optimization. Part I: Analysis.Struct. Optim. 11, 29–42Google Scholar
6. Barthold, F.-J.; Becker, A.; Falk, A.; Rust, W. 1993: Zum Einfluß der Netzadaption bei der Formoptimierung.Zeitschrift für Angewandte Mathematik und Mechanik 73, 680–684Google Scholar
7. Barthold, F.-J.; Falk, A.; Stein, E. 1994: Structural optimization for rubberlike materials using analytical sensitivity analysis. In: Gilmore, B.J.; Hoeltzel, D.A.; Dutta, D.; Eschenauer, H.A. (eds.)Advances in design automation, pp. 43–50Google Scholar
8. Becker, A. 1992: Strukturoptimierung stabilitätsgefährdeter Systeme mittels analytischer Gradientenermittlung.Technical Report F 92/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität HannoverGoogle Scholar
9. Beux, F.; Dervieux, A. 1994: A hierarchical approach for shape optimization.Eng. Computations 11, 25–48Google Scholar
10. Bletzinger, K.-U.; Kimmich, A.; Ramm, E. 1991: Efficient modeling in shape optimal design.Comp. Sys. Engrg. 2, 483–496Google Scholar
11. Braibant, V.; Fleury, C. 1986: Shape optimal design and CAD orientated formulation.Engng. with Comp. 1, 193–204Google Scholar
12. Bremicker, M. 1989: Dekompositionsstrategie in Anwendung auf Probleme der Gestaltsoptimierung.Technical Report 173, Fortschritts-Berichte VDIGoogle Scholar
13. Bugeda, G.; Oliver, J. 1993: A general methodology for structural shape optimization problems using automatic adaptive remeshing.Int. J. Numer. Meth. Engrg. 36, 3161–3185Google Scholar
14. Choi, K.K.; Chang, K.W. 1994: A study of design velocity field computation for shape optimal design.Finite Elements in Analysis and Design 15, 317–341Google Scholar
15. Eschenauer, H.A.; Schuhmacher, A. 1997: Topology and shape optimization procedures using hole positioning criteria — theory and applications. In: Rozvany, G.I.N. (ed.)Topology optimization in structural mechanics, pp. 135–196. CISM Courses and Lectures, 374. Vienna: SpringerGoogle Scholar
16. Falk, A. 1995: Adaptive Verfahren für die Formoptimierung flächiger Strukturen unter Berücksichtigung der CAD-FE-Kopplung.Technical Report F 95/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universität HannoverGoogle Scholar
17. Falk, A.; Barthold, F.-J. 1995: Ein hierarchisches Verfahren für die Formoptimierung.Zeitschrift für Angewandte Mathematik und Mechanik 75, 589–590Google Scholar
18. Falk, A.; Barthold, F.-J.; Stein, E. 1995: Hierarchical modelling in shape optimization. In: Olhoff, N.; Rozvany, G.I.N. (eds.)Proc. WCSMO-1 (held in Goslar, Germany, May 28 – June 2, 1995), pp. 371–376. London: Elsevier Applied ScienceGoogle Scholar
19. Farin, G. 1993:Curves and Surfaces for Computer Aided Geometric Design, 3-rd edition. London: Academic PressGoogle Scholar
20. Hinton, E.; Özakça, M.; Rao, N.V.R. 1991: An integrated approach to structural shape optimization of linearly elastic structures. Part II: Shape definition and adaptivity.Comp. Sys. Engrg. 2 41–56Google Scholar
21. Hinton, E.; Rao, N.V.R.; Özakça, M. 1991: An integrated approach to structural shape optimization of linearly elastic structures. Part I: General methodology.Comp. Sys. Engrg. 2 27–40Google Scholar
22. Maute, K.; Ramm, E. 1994: Adaptive topology optimization.Struct. Optim. 10, 100–112Google Scholar
23. Maute, K.; Ramm, E. 1997: Adaptive topology optimization of shell structures.AIAA 35, 1767–1773Google Scholar
24. Ramm, E.; Bletzinger, K.-U.; Kimmich, S. 1991: Stategies in shape optimization of free form shells. In: Wagner, W; Wriggers, P. (ed.)Nonlinear computational mechanics, state of the art, pp. 163–192. Berlin, Heidleberkg, New York: SpringerGoogle Scholar
25. Rust, W.; Stein, E. 1992: 2D-Finite-Element Adaptations in Structural Mechanics, Including Shell Analysis and Non-linear Calculations. In: Zienkiewiccz, O.C.; Ladeveze, P. (eds.)New adavances in computational mechanics, pp. 219–232. Amsterdam: Elsevier Sciences Publ.Google Scholar
26. Schittkowski, K.; Zillober, C.; Zotemantel, R. 1994: Numerical comparison of nonlinear programming algorithms for structural optimization.Struct. Optim. 7, 1–19Google Scholar
27. Schramm, U.; Pilkey, W.D. 1993: The coupling of geometric description and finite elements using NURBS — A study in shape optimization.Finite Elements in Analysis and Design 15, 11–34Google Scholar
28. Sienz, J.; Hinton, E. 1997: Reliable structural optimization with error estimation, adaptivity and robust sensitivity analysis.Comp. & Struct. 64, 31–63Google Scholar
29. Stein, E.; Seifert, B.; Ohnimus, S.; Carstensen, C. 1994: Adaptive finite element analysis of geometrically nonlinear plates and shells, especially buckling.Int. J. Numer. Meth. Engrg. 37, 2631–2655Google Scholar

## Authors and Affiliations

• A. Falk
• 1
• F. -J. Barthold
• 2
• E. Stein
• 2
1. 1.Ingenieur-Consult Haas & PartnerHannoverGermany
2. 2.Institute of Structural Mechanics and Computational MechanicsUniversity of HannoverHannoverGermany