Variational methods for indefinite superlinear homogeneous elliptic problems

  • Henri Berestycki
  • Italo Capuzzo-Dolcetta
  • Louis Nirenberg
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. ALAMA, G. TARANTELLO, On semilinear elliptic equations with indefinite nonlinearities.Preprint (1992)Google Scholar
  2. [2]
    H. AMANN, On the existence of positive solutions of nonlinear elliptic boundary value problems,Indiana Univ. Math. J. 21, 125–146, 1971Google Scholar
  3. [3]
    A. AAMBROSETTI, P.H. RABINOWITZ, Dual variational methods in critical point theory and applications,J. Funct. Ana. 14, 349–381, 1973Google Scholar
  4. [4]
    C. BANDLE, M.A. POZIO, A. TESEI, Existence and uniqueness of solutions of nonlinear problems,Math. Z. 199, 257–278, 1988Google Scholar
  5. [5]
    H. BERESTYCKI, I. CAPUZZO DOLCETTA, L. NIRENBERG, Problèmes elliptiques indéfinis et théorèmes de Liouville non linéaires,C.R. Acad. Sci. Paris 317, série I, 945–950, 1993Google Scholar
  6. [6]
    H. BERESTYCKI, I. CAPUZZO DOLCETTA, L. NIRENBERG, Superlinear indefinite elliptic problems and nonlinear Liouville theorems.In preparation Google Scholar
  7. [7]
    A.K. BEN NAOUM, C. TROELSTER, M. WILLEM, Existence and multiplicity results for homogeneous second order differential equations.Preprint, 1993Google Scholar
  8. [8]
    H. BREZIS, L. NIRENBERG,Nonlinear Functional Analysis, book in preparationGoogle Scholar
  9. [9]
    M. GIRARDI, M. MATZEU, Existence and multiplicity results for periodic solutions of superquadratic Hamiltonian systems where the potential changes sign.Preprint Università di Roma Tor Vergata 7–93, 1993Google Scholar
  10. [10]
    P. HESS & T. KATO, On some linear and nonlinear eigenvalue problems with an indefinite weight function,Comm. in PDE 5, 999–1030, 1980Google Scholar
  11. [11]
    K. KREITH, Picone's identity and generalizations,Rendiconti di Matematica 8, 251–262, 1975Google Scholar
  12. [12]
    S. LASSOUED, Periodic solutions of a second order superquadratic system with with change of sign of potential,J. Diff. Equ. 93, 1–18, 1991Google Scholar
  13. [13]
    T. OUYANG, On the positive solutions of semilinear equations Δuu+hu p=0 on compact manifolds, Part II,Indiana Univ. Math. J. 40, 1083–1141, 1991Google Scholar
  14. [14]
    M. PICONE, Sui valori eccezionali di un parametro da cui dipende un'equazione differenziale ordinaria del secondo ordine,Ann. Scuola Norm. Pisa 11, 1–141, 1910Google Scholar
  15. [15]
    M.A. POZIO, A. TESEI, Existence and uniqueness of solutions of nonlinear problems,Math. Z. 199, 257–278, 1988Google Scholar
  16. [16]
    P. H. RABINOWITZ,Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. Nr.65, Amer. Math. Soc., 1986Google Scholar
  17. [17]
    M. STRUWE,Variational Methods and Applications to Nonlinear Partial Differential Equations and Hamiltonian systems, Springer Verlag, Berlin, 1990Google Scholar
  18. [18]
    TEHEBANI, Remarks on some semilinear elliptic eigenvalue problems, PhD Thesis, Courant Institute, New York, 1994Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Henri Berestycki
    • 1
  • Italo Capuzzo-Dolcetta
    • 2
  • Louis Nirenberg
    • 3
  1. 1.Dept. de Math. et Info.Ecole Normale Supérieure URA 762Paris Cedex 05France
  2. 2.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomaItalia
  3. 3.Courant Institute of Math. Sci.NYUNew YorkUSA

Personalised recommendations