Communications in Mathematical Physics

, Volume 108, Issue 2, pp 241–255 | Cite as

One dimensional spin glasses with potential decay 1/r1+g. Absence of phase transitions and cluster properties

  • M. Campanino
  • E. Olivieri
  • A. C. D. van Enter
Article

Abstract

One-dimensional Ising spin systems interacting via a two-body random potential are considered; a decay with the distance like 1/r1+ε is assumed.

We consider only boundary conditions independent of the random realization of the interactions and prove uniqueness and cluster properties of Gibbs states with probability one.

Keywords

Boundary Condition Neural Network Phase Transition Statistical Physic Complex System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Campanino, M., Capocaccia, D., Olivieri, E.: Analyticity for one-dimensional systems with long range superstable interactions. J. Stat. Phys.33, 437–476 (1983)Google Scholar
  2. 2.
    Cassandro, M., Olivieri, E., Tirozzi, B.: Infinite differentiability for one-dimensional spin systems with long range random interaction. Commun. Math. Phys.87, 229–252 (1982)Google Scholar
  3. 3.
    van Enter, A.C.D., Fröhlich, J.: Absence of symmetry breaking forN-vector spin glass models in two dimensions. Commun. Math. Phys.98, 425–432 (1985)Google Scholar
  4. 4.
    van Enter, A.C.D., van Hemmen, J.L.: The thermodynamic limit for long-range random systems. J. Stat. Phys.32, 141–152 (1983)Google Scholar
  5. 5.
    van Enter, A.C.D., van Hemmen, J.L.: Absence of phase transitions in certain one-dimensional long-range random systems. J. Stat. Phys.39, 1–13 (1985)Google Scholar
  6. 6.
    Fröhlich, J.: Mathematical aspects of the physics of disordered systems. Proc. of Les Houches Summer School 1984Google Scholar
  7. 7.
    Goulart Rosa, S.: The thermodynamic limit of the quenched free energy of magnetic systems with random interactions. J. Phys.15, 51 (1982)Google Scholar
  8. 8.
    Khanin, K.M.: Absence of phase transitions in one-dimensional long-range spin systems with random Hamiltonian. Theor. Math. Phys.43, 445–449 (1980)Google Scholar
  9. 9.
    Khanin, K.M., Sinai, Ya.G.: Existence of free energy for models with long range random Hamiltonians. J. Stat. Phys.20, 573–584 (1979)Google Scholar
  10. 10.
    Parisi, G.: Proceedings of the 1982 Les Houches Summer School. Zuber, J.B. (ed.). Amsterdam: North-Holland 1982Google Scholar
  11. 11.
    Ruelle, D.: Thermodynamic formalism. Encyclopaedia of mathematics and its applications, Vol. 5. Reading MA: Addison-Wesley 1978Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • M. Campanino
    • 1
  • E. Olivieri
    • 2
  • A. C. D. van Enter
    • 3
  1. 1.Dipartimento di MatematicaII Università di Roma “Tor Vergata”, via Orazio Raimondo(La Romanina), RomaItaly
  2. 2.Dipartimento di Matematica, Università di Roma “La Sapienza”, p. le A. Moro 5C.N.R.-G.N.F.M.RomaItaly
  3. 3.SFB 123, University of HeidelbergHeidelberg 1Germany

Personalised recommendations