Advertisement

Mathematical Notes

, Volume 52, Issue 4, pp 1005–1011 | Cite as

Algebrogeometric solutions of the nonlinear boundary problem on a segment for the sine-Gordon equation

  • R. F. Bikbaev
  • A. R. Its
Article

Keywords

Boundary Problem Nonlinear Boundary Algebrogeometric Solution Nonlinear Boundary Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    M. J. Ablowitz and H. Segur, “The inverse scattering transform: semi-infinite interval,” J. Math. Phys.,16, 1054–1056 (1975).Google Scholar
  2. 2.
    A. S. Focas, “An initial-boundary problem for the nonlinear Schrödinger equation,” Physica D,35, 167–185 (1989).Google Scholar
  3. 3.
    V. O. Tarasov, “Boundary problem for the nonlinear Schrödinger equation,” Zap. Nauchn. Semin. Leningr. Otdel. Mat. Inst.,169, 151–165 (1988).Google Scholar
  4. 4.
    I. T. Khabibullin, “Integrable initial-boundary problems,” Teor. Mat. Fiz.,86, No. 1, 43–52 (1991).Google Scholar
  5. 5.
    R. F. Bikbaev and V. O. Tarasov, “Initial-boundary problem for the nonlinear Schödinger equation,” J. Phys. A,24, No. 11, 2507–2517 (1991).Google Scholar
  6. 6.
    V. O. Tarasov, “The integrable initial-boundary value problem on a semiline: nonlinear Schrödinger and sine-Gordon equations,” Inv. Probl., No. 7, 435–449 (1991).Google Scholar
  7. 7.
    R. Parmentier, “Fluxions in distributions of Josephson contacts,” in: Soliton Effects [Russian translation], Mir, Moscow (1981), pp. 185–208.Google Scholar
  8. 8.
    E. K. Sklyanin, “Boundary conditions for integrable equations,” Funkts. Anal. Prilozh.,21, No. 2, 86–87 (1987).Google Scholar
  9. 9.
    R. F. Bikbaev and A. R. Its, “Algebrogeometric solutions of a boundary problem for the nonlinear Schrödinger equation,” Mat. Zametki,45, No. 5, 3–10 (1989).Google Scholar
  10. 10.
    R. F. Bikbaev, “Finite-zone solutions of boundary problems for integrable equations,” Mat. Zametki,48, No. 2, 10–18 (1990).Google Scholar
  11. 11.
    R. F. Bikbaev, “Integrable boundary problems and nonlinear Fourier harmonics,” Zap. Nauchn. Semin. Leningr. Otdel. Mat. Inst.,199, 23–30 (1992).Google Scholar
  12. 12.
    I. T. Khabibullin, “The Bäcklund transfer and initial-boundary problems,” Mat. Zametki,49, No. 4, 130–137 (1991).Google Scholar
  13. 13.
    R. F. Bikbaev and S. B. Kuksin, “Periodic boundary problem for the sine-Gordon equation, its small Hamiltonian perturbations, and the KAM-deformations of finite-zone tori,” Algeb. Anal.,4, No. 3, 70–111 (1992).Google Scholar
  14. 14.
    V. A. Kozel and V. P. Kotlyarov, “Almost-periodic solutions of the equation uxx−utt = sin u,” Dokl. Akad. Nauk UkrSSR,10A, 878–881 (1976).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • R. F. Bikbaev
    • 1
  • A. R. Its
    • 1
  1. 1.St. Petersburg Section, Steklov Mathematical InstituteRussian Academy of SciencesUSSR

Personalised recommendations