Mathematical Notes

, Volume 53, Issue 4, pp 389–393 | Cite as

The Liouville property of invariant measures of completely integrable systems and the Monge-Ampère equation

  • V. V. Kozlov


Integrable System Invariant Measure Liouville Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Pogorelov, The Extrinsic Geometry of Convex Surfaces [in Russian], Nauka, Moscow (1969).Google Scholar
  2. 2.
    N. V. Krylov, Nonlinear Elliptic and Parabolic Equations of Second Order [in Russian], Nauka, Moscow (1985).Google Scholar
  3. 3.
    A. P. Veselov, “On changing the time in integrable systems,” Vestn. Mosk. Gos. Univ., Ser. 1, Mat. Mekh., No. 5, 25–29 (1987).Google Scholar
  4. 4.
    V. V. Kozlov, Qualitative Analysis Methods in Rigid Body Dynamics [in Russian], Izd. Mosk. Gos. Univ. (1980).Google Scholar
  5. 5.
    A. N. Kolmogorov, “On dynamical systems with an integral invariant on the torus,” Dokl. Akad. Nauk SSSR,93, No. 5, 763–766 (1953).Google Scholar

Copyright information

© Plenum Publishing Corporation 1993

Authors and Affiliations

  • V. V. Kozlov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations