Radiation and Environmental Biophysics

, Volume 32, Issue 3, pp 183–191 | Cite as

Criteria of applicability for autoradiography of tritium

  • A. M. Kellerer
  • J. Chen
  • H. Roost
Article

Abstract

Autoradiography is an effective tool for the imaging of radionuclide distributions in various samples. In sophisticated applications with special preparation and development of sample-emulsion combinations and subsequent grain counts it can be highly quantitative, but it requires carefully controlled conditions and a variety of counter-checks, for example through scintillation spectroscopy. Less refined applications use X-ray films as detectors, and their seeming simplicity tends to invite artefacts and misinterpretations. Particular care needs to be taken, if one deals, or presumes to deal, with the low-energy ß-emitter tritium. Because of the short electron ranges the film must be in intimate contact with the sample, which tends to produce chemographic artefacts; without added spectroscopic measurements it is impossible to discriminate the spurious signals from a blackening of the film due to tritium. Recent statements concerning autoradiographic tritium measurements in tree samples have created considerable public concern and have demonstrated the pitfalls of uncritical use. This paper presents order-of-magnitude criteria for the detection threshold in the autoradiography of tritium; they can serve as an exclusion principle for some of the more extravagant misinterpretations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amersham (1992) Hyperfilm, high performance autoradiography films. Product information, Amersham Buchler GmbH & Co KG, Braunschweig, GermanyGoogle Scholar
  2. 2.
    Baker JRJ (1979) Autoradiography: a comprehensive overview. (Microscopic handbooks, vol 18) The Royal Microscopical Society. Oxford University Press, Oxford, UKGoogle Scholar
  3. 3.
    ICRU (1980) Fundamental quantities and units, International Commission for Radiation Measurements and Units, Washington DC, Report 33Google Scholar
  4. 4.
    Kim MA, Baumgärtner F, Schulz C (1991) Accurate determination of tritium in biosystems. Radiochim Acta 55:101–106Google Scholar
  5. 5.
    Kretzdorn HG (1981) Untersuchungen zur Bestimmung des mittleren Energieaufwandes pro Silberkorn in den photographischen Emulsionen Ilford K2 and K5. Thesis, Institut für Med. Strahlenkunde, Universität WürzburgGoogle Scholar
  6. 6.
    NCRP (1976) Tritium measurement techniques, Report 47. National Council of Radiation Protection, Washington DCGoogle Scholar
  7. 7.
    Niedersächsisches Sozialministerium (1992) Expertenkommission des Niedersächsischen Sozialministeriums: Leukämie in der Elbmarsch. Interim report, NovemberGoogle Scholar
  8. 8.
    Rechenmann RV, Wittendorp E (1972) High efficiency development procedures for nuclear emulsions. Microsc 96 (Pt 2):227–244Google Scholar
  9. 9.
    Rogers AW (1979) Techniques of autoradiography. Elsevier, AmsterdamGoogle Scholar
  10. 10.
    Rudd ME (1990) Cross Sections for production of secondary electrons by charged particles. Radiat Prot Dosim 31:17–22Google Scholar
  11. 11.
    Winzerith M, Wittendorp W, Rechenmann RV, Mandel P (1977) Nuclear, nucleolar repair, or turnover of DNA in adult rat brain. J Neurosci Res 3:217–230Google Scholar
  12. 12.
    Wittendorp-Rechenmann E, Thellier M (1993) Specific methods for the imaging of radioactive tracers. Plant Physiol Biochem (in press)Google Scholar
  13. 13.
    Zaider M, Brenner D, Wilson WE (1983) The applications of track calculations to radiobiology. I. Monte Carlo simulation of proton tracks. Radiat Res 95:231–247Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • A. M. Kellerer
    • 1
    • 2
  • J. Chen
    • 2
  • H. Roost
    • 1
  1. 1.Strahlenbiologisches Institut der Universität MünchenMünchenGermany
  2. 2.GSF-ForschungszentrumInstitut für StrahlenbiologieOberschleißheimGermany

Personalised recommendations